转自:http://blog.youkuaiyun.com/pointbreak1/article/details/49422265
题目:
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|
.
For example, given three people living at (0,0)
, (0,4)
, and (2,2)
:
1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0
The point (0,2)
is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
Hint:
- Try to solve it in one dimension first. How can this solution apply to the two dimension case?
先考虑所有点的row值,如上图为0, 0, 2,则中值为0, 所有点距中值的距离和为(0 - 0) + (0 - 0) + (2 - 0) = 2
同理,考虑所有点的cols值,上图为,0, 2, 4,中值为2,所有点距中值的距离和为(2- 0) + (2 - 2) + (4 - 2) = 4,
所以总距离为2 + 4 = 6。
C++版:
- class Solution {
- public:
- int minTotalDistance(vector<vector<int>>& grid) {
- if(grid.size() == 0)
- return 0;
- vector<int> rows, cols;
- for(int i = 0; i < grid.size(); i++) {
- for(int j = 0; j < grid[0].size(); j++) {
- if(grid[i][j] == 1)
- rows.push_back(i);
- }
- }
- for(int j = 0; j < grid[0].size(); j++) {
- for(int i = 0; i < grid.size(); i++) {
- if(grid[i][j] == 1)
- cols.push_back(j);
- }
- }
- int distance = 0;
- int mid = rows.size() / 2;
- for(int i = 0; i < rows.size(); i++)
- distance += abs(rows[i] - rows[mid]);
- mid = cols.size() / 2;
- for(int i = 0; i < cols.size(); i++)
- distance += abs(cols[i] - cols[mid]);
- return distance;
- }
- };