Go 环境搭建,LINUX/Windows

Go语言的hello world!代码:

[java]  view plain copy print ?
  1. package main  
  2.   
  3. import "fmt"  
  4.   
  5. func main() {  
  6.     fmt.Println("Hello, 世界")  
  7. }  


接下来为大家带来,Go开发环境的安装。

  首先是安装Go,这里有很详细的安装说明,http://code.google.com/p/golang-china/wiki/Install 或者http://golang.org/doc/install

下面我们在window下面安装,google有提供win安装包,对于新手还是非常简单的!

https://code.google.com/p/go/downloads/list

直接下一步.......安装非常简单!

  安装好Go以后,我们就可以搭建开发环境了,这里我用的是 Sublime Text 2 + GoSublime + gocode。对于不了解Sublime Text 2的朋友,可以看看官网:http://www.sublimetext.com/(总的来说是一个轻量级,用起来很方便的工具)

1. 下载 Sublime Text 2,地址如下:http://www.sublimetext.com/

2. 解压以后,双击 sublime_text,就可以使用 Sublime Text 2 了。

3. 安装 Package Control,在打开 Sublime Text 2以后,按下快捷键 Ctrl + `,打开命令窗行,这个按键在Tab键的上面,我刚开始还没找到,呵呵。输入以下内容,并回车:

  import urllib2,os; pf='Package Control.sublime-package'; ipp=sublime.installed_packages_path(); os.makedirs(ipp) if not os.path.exists(ipp) else None; urllib2.install_opener(urllib2.build_opener(urllib2.ProxyHandler())); open(os.path.join(ipp,pf),'wb').write(urllib2.urlopen('http://sublime.wbond.net/'+pf.replace(' ','%20')).read()); print 'Please restart Sublime Text to finish installation'

4. 重启Sublime Text 2后,就可以发现在 Preferences菜单下,多出一个菜单项 Package Control。

5.现在安装GoSublime插件了,按住Ctrl+Shilft+p会弹出一个对话框


输入install回车弹出一个安装包的对话框


如入GoSublime选择GoSublime回车

输入Go build选中回车(这个属于可选)

搞定,GoSublime安装成功。

6.下面安装gocode

打开控制台,输入以下内容:

    go get github.com/nsf/gocode

    go install github.com/nsf/gocode

也可以去github下载https://github.com/nsf/gocode.git(要安装google的git版本管理工具)

  安装完成后,我们可以在 go/bin 目录下,发现多出了个 gocode 文件。(一定要放在bin目录下)

7. 修改GoSublime配置:在 Preferences菜单下,找到Package Settings,然后找到 GoSublime,再往下找到 Settings - Default。再打开的文件中,添加如下配置,并保存:


好了,到目前为止,开发环境搭建完成。

打开 Sublime Text 2,新建 helloworld.go,编写代码如下:

见证Go代码自动提示的时刻了

输入一个p


回车(enter键)


main方法,包自动给你生成了。

下面是一个打印的例子:




按下快捷键 Ctrl + b 界面下方会出现如下界面:



输入 go build hello.go


运行,同样 按下快捷键 Ctrl + b 界面下方会出现如下界面,输入 hello回车 。如图:


好了,到现在,开发环境就搭建完毕了,希望大家也来学习Go这门语言。


新手入门参考:

新手入门api是我见过的最好的新手入门文档,希望go能发扬光大。


上述内容转载http://blog.youkuaiyun.com/love_se/article/details/7754274 



但是linux下需要再变通的配置了

环境变量部分:

修改/etc/profile或者.bashrc或者.bash_profile


如同JDK般加入

export JAVA_HOME=/usr/lib/jvm/java-7-sun  

export JRE_HOME=${JAVA_HOME}/jre  
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib  
export PATH=${JAVA_HOME}/bin:$PATH 


<think>我们正在讨论Gemini GenAI SDK中的聊天历史功能。由于这是一个特定的技术问题,我将根据一般性的知识和常见的SDK设计模式来回答,因为Gemini GenAI SDK的具体实现细节可能随时间变化,且我没有实时的访问权限。但我会尽量提供通用且可靠的指导。 聊天历史功能通常是指在一个持续对话中,模型能够记住之前的对话内容,从而在后续的回复中保持上下文。在Gemini GenAI SDK中,实现聊天历史管理通常涉及以下几个关键点: 1. **消息传递结构**:通常,每次调用模型时,我们需要传递整个对话历史(包括用户的消息和模型的回复)作为上下文。这样模型才能基于整个对话历史生成回复。 2. **消息格式**:每条消息通常包含角色(如"user"或"model")和内容(文本)。例如: ```json [ {"role": "user", "content": "你好"}, {"role": "model", "content": "你好!有什么可以帮助你的吗?"}, {"role": "user", "content": "告诉我Gemini是什么?"} ] ``` 3. **管理对话历史**:开发者需要维护一个消息列表,每次用户发送新消息时,将新消息添加到历史列表中,然后调用模型生成回复,再将模型的回复也添加到历史列表中。注意,历史记录的长度不能超过模型的最大上下文长度(通常有token限制)。 4. **截断历史记录**:当对话历史很长时,需要截断以避免超过token限制。常见的策略是保留最近的几条消息,或者删除中间的一些消息但保留开头(如系统指令)和最近的对话。 5. **Gemini SDK中的具体实现**:在Gemini SDK中,可能会有一个`ChatSession`类来管理对话状态。例如: ```python import google.generativeai as genai genai.configure(api_key="YOUR_API_KEY") model = genai.GenerativeModel(&#39;gemini-pro&#39;) chat = model.start_chat(history=[]) # 初始历史为空 response = chat.send_message("你好") print(response.text) # 模型的回复 # 继续对话 response = chat.send_message("告诉我Gemini是什么?") print(response.text) # 查看历史 for message in chat.history: print(message.role, message.parts[0].text) ``` 在上面的例子中,`chat`对象会自动维护历史记录。每次调用`send_message`后,用户的消息和模型的回复都会被添加到`chat.history`中。 6. **常见问题**: - **上下文丢失**:如果发现模型没有记住之前的对话,请检查是否在每次发送消息时都使用了同一个`ChatSession`实例,并且历史记录是否正确传递。 - **token限制**:当历史记录很长时,可能会超过模型的最大token限制(例如,gemini-pro模型的最大上下文长度是30720个token)。此时,需要手动截断历史记录(如保留最近的几条消息)或者使用更高级的摘要技术。 - **历史记录存储**:如果需要长期存储对话,可以将历史记录保存到数据库,并在下次对话时重新加载。但要注意,重新加载后,需要确保整个历史记录不超过token限制。 7. **重置历史**:如果需要开始一个新的对话,可以创建一个新的`ChatSession`实例。 8. **系统指令**:在对话开始时,可以设置一个系统指令(system instruction)来指导模型的行为。例如: ```python model = genai.GenerativeModel(&#39;gemini-pro&#39;, system_instruction="你是一个专业的客服助手。") ``` 以上是关于Gemini GenAI SDK中聊天历史功能的基本实现和常见问题处理。具体细节请参考官方文档。 由于这是一个技术性较强的问题,我生成的相关问题将围绕使用中的常见场景和问题: §§相关问题§§ 1. 如何在Gemini GenAI SDK中重置聊天历史? 2. 当对话历史很长时,如何避免超过模型的token限制? 3. 如何将聊天历史保存到数据库并在下次对话时恢复? 4. Gemini模型支持的最大上下文长度是多少? 5. 在Gemini SDK中,如何设置系统指令来指导模型的行为?</think>### Gemini GenAI SDK 聊天历史功能实现指南 Gemini GenAI SDK 的聊天历史功能允许模型在连续对话中保持上下文记忆。以下是关键实现步骤和常见问题解决方案: #### 一、核心实现方法 1. **历史记录传递** 每次请求需将完整对话历史作为上下文传入: ```python from google.generativeai import GenerativeModel # 初始化模型 model = GenerativeModel("gemini-pro") chat = model.start_chat(history=[]) # 初始历史为空 # 首次交互 response = chat.send_message("解释量子力学") print(response.text) # 模型回复 # 后续交互(自动携带历史) response = chat.send_message("用简单例子说明") print(response.text) # 基于上下文的回复 ``` 2. **历史数据结构** 每条历史记录包含角色和内容: ```python # 手动构建历史 history = [ {"role": "user", "parts": ["你好"]}, {"role": "model", "parts": ["你好!有什么可以帮助你?"]} ] ``` 3. **历史管理技巧** - **上下文长度限制**:Gemini 1.5 Pro 支持最大 1M token 上下文[^1] - **历史截断策略**: ```python # 保留最近10轮对话 if len(chat.history) > 20: # 10轮对话=20条消息 chat.history = chat.history[-20:] ``` #### 二、常见问题解决 1. **上下文丢失问题** **症状**:模型忘记之前的对话 **解决方案**: - 检查是否每次调用都传递了完整 `chat.history` - 验证 token 计数是否超限: ```python import tiktoken encoder = tiktoken.encoding_for_model("gpt-4") tokens = encoder.encode(str(chat.history)) print(len(tokens)) # 需小于模型上限 ``` 2. **历史记录污染** **场景**:用户输入包含敏感数据 **清理方法**: ```python def clean_history(history): return [msg for msg in history if not is_sensitive(msg["parts"][0])] ``` 3. **性能优化** - 使用 `stream=True` 流式传输减少延迟 - 对长历史启用摘要功能: ```python summary = model.generate_content("总结对话要点: " + str(history[-5:])) new_history = [{"role": "system", "parts": [summary.text]}] ``` #### 三、最佳实践 1. **混合历史策略** ```mermaid graph LR A[新对话] --> B{历史长度>阈值?} B -->|是| C[摘要前5轮+完整后5轮] B -->|否| D[使用完整历史] ``` 2. **元数据存储** 建议将历史记录与会话元数据(如 session_id)共同存储: ```python # Firebase 存储示例 firestore.collection("chats").document(session_id).set({ "history": chat.history, "last_updated": firestore.SERVER_TIMESTAMP }) ``` > **重要提示**:Gemini 1.5 支持原生文件处理(PDF/Word),可将文档作为历史上下文传入[^1]: > ```python > response = chat.send_message( > "总结此文档", > file=open("report.pdf", "rb") > ) > ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值