BZOJ 1578 [Usaco2009 Feb]Stock Market 股票市场

本文介绍了一种利用动态规划解决股市投资的问题,目标是在给定的股票价格矩阵和初始资金下找到最优买卖策略,以实现利润最大化。

Description

尽管奶牛们天生谨慎,她们仍然在住房抵押信贷市场中受到打击,现在她们开始着手于股市。 Bessie很有先见之明,她不仅知道今天S (2 <= S <= 50)只股票的价格,还知道接下来一共D(2 <= D <= 10)天的(包括今天)。 给定一个D天的股票价格矩阵(1 <= 价格 <= 1000)以及初始资金M(1 <= M <= 200,000),求一个最优买卖策略使得最大化总获利。每次必须购买股票价格的整数倍,同时你不需要花光所有的钱(甚至可以不花)。这里约定你的获利不可能超过500,000。 考虑这个牛市的例子(这是Bessie最喜欢的)。在这个例子中,有S=2只股票和D=3天。奶牛有10的钱来投资。 今天的价格 | 明天的价格 | | 后天的价格 股票 | | | 1 10 15 15 2 13 11 20   以如下策略可以获得最大利润,第一天买入第一只股票。第二天把它卖掉并且迅速买入第二只,此时还剩下4的钱。最后一天卖掉第二只股票,此时一共有4+20=24的钱。

Input

  • 第一行: 三个空格隔开的整数:S, D, M

  • 第2..S+1行: 行s+1包含了第s只股票第1..D天的价格

Output

  • 第一行: 最后一天卖掉股票之后最多可能的钱数。

Sample Input

2 3 10

10 15 15

13 11 20

Sample Output

24

先发现一个问题
第一天买了第三天买就等于 第一天买了第二天卖第二天再买第三天再卖。所以问题转化成每天的状态转移

所以问题转化成 有无穷个价值不同的 物品 ,资金最多为m个

的每天一次完全背包 所以记得 清空数组

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
//by mars_ch
int f[5000005];
int map[55][55];
int s,d,m;
int main()
{
    scanf("%d%d%d",&s,&d,&m);
    for(int i=1;i<=s;i++)
    {
        for(int j=1;j<=d;j++)
        {
            scanf("%d",&map[i][j]);
        }
    }
    int mx=m;
    for(int i=1;i<=d-1;i++)
    {
        memset(f,0,sizeof(f));
        for(int j=1;j<=s;j++)
        {
            for(int k=map[j][i];k<=mx;k++)
            {
                f[k]=max(f[k],f[k-map[j][i]]+map[j][i+1]-map[j][i]);
            }
        }       
        mx+=f[mx];
    }
    printf("%d\n",mx);
}
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值