117. Populating Next Right Pointers in Each Node II (M)

本文深入探讨了在二叉树结构中填充每个节点的next指针,使其指向同一层的右侧相邻节点的算法实现。提供了两种解决方案:递归方法和层序遍历方法,均在O(1)额外空间限制下完成。通过代码示例详细解释了如何处理非满二叉树的情况。

Populating Next Right Pointers in Each Node II (M)

Given a binary tree

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.

Example:

img

Input: {"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":null,"right":null,"val":4},"next":null,"right":{"$id":"4","left":null,"next":null,"right":null,"val":5},"val":2},"next":null,"right":{"$id":"5","left":null,"next":null,"right":{"$id":"6","left":null,"next":null,"right":null,"val":7},"val":3},"val":1}

Output: {"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":{"$id":"4","left":null,"next":{"$id":"5","left":null,"next":null,"right":null,"val":7},"right":null,"val":5},"right":null,"val":4},"next":{"$id":"6","left":null,"next":null,"right":{"$ref":"5"},"val":3},"right":{"$ref":"4"},"val":2},"next":null,"right":{"$ref":"6"},"val":1}

Explanation: Given the above binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. 

Note:

  • You may only use constant extra space.
  • Recursive approach is fine, implicit stack space does not count as extra space for this problem.

题意

对于二叉树的每一层,将当前层每一个结点的next域指向该层的右边一个结点;如果已经是当前层的最右结点,则指向null。(限制只能使用 O ( 1 ) O(1) O(1)的额外空间,如果使用递归,则系统栈不计入额外空间)

思路

116. Populating Next Right Pointers in Each Node 相比,只是在满二叉树这个条件上做了变化。因此只要在先前的代码上做出修改即可。


代码实现 - 递归

class Solution {
    public Node connect(Node root) {
        if (root == null) {
            return null;
        }

        // 寻找root的右兄弟子树中出现的第一个子结点
        Node p = root.next;
        while (p != null) {
            if (p.left != null) {
                p = p.left;
                break;
            }
            if (p.right != null) {
                p = p.right;
                break;
            }
            p = p.next;
        }

        if (root.right != null) {
            root.right.next = p;
            p = root.right;
        } 
        if (root.left != null) {
            root.left.next = p;
        }

        // 注意需要先递归右子树再递归左子树,具体原因见参考评论
        connect(root.right);
        connect(root.left);

        return root;
    }
}

代码实现 - 层序遍历( O ( 1 ) O(1) O(1)额外空间)

// 版本1
class Solution {
    public Node connect(Node root) {
        Node head = root;

        while (head != null) {
            Node nextHead = null;		// 指向下一层的第一个结点
            Node last = null;			// 指向下一层已连接的最后一个结点
            
            // 连接下一层所有结点
            while (head != null) {
                if (head.left != null) {
                    if (nextHead == null) {
                        nextHead = head.left;
                        last = nextHead;
                    } else {
                        last.next = head.left;
                        last = last.next;
                    }
                }
                if (head.right != null) {
                    if (nextHead == null) {
                        nextHead = head.right;
                        last = nextHead;
                    } else {
                        last.next = head.right;
                        last = last.next;
                    }
                }
                head = head.next;
            }
            
            head = nextHead;
        }

        return root;
    }
}

// 版本2
class Solution {
    public Node connect(Node root) {
        Node dummy = new Node(0, null, null, null);
        Node cur = dummy;
        Node head = root;
        
        while (root != null) {
            if (root.left != null) {
                cur.next = root.left;
                cur = cur.next;
            }
            if (root.right != null) {
                cur.next = root.right;
                cur = cur.next;
            }
            root = root.next;
            if (root == null) {
                root = dummy.next;
                cur = dummy;
                dummy.next = null;
            }
        }

        return head;
    }
}

参考

cnBlogs - Grandyang

1. Two Sum 2. Add Two Numbers 3. Longest Substring Without Repeating Characters 4. Median of Two Sorted Arrays 5. Longest Palindromic Substring 6. ZigZag Conversion 7. Reverse Integer 8. String to Integer (atoi) 9. Palindrome Number 10. Regular Expression Matching 11. Container With Most Water 12. Integer to Roman 13. Roman to Integer 14. Longest Common Prefix 15. 3Sum 16. 3Sum Closest 17. Letter Combinations of a Phone Number 18. 4Sum 19. Remove Nth Node From End of List 20. Valid Parentheses 21. Merge Two Sorted Lists 22. Generate Parentheses 23. Swap Nodes in Pairs 24. Reverse Nodes in k-Group 25. Remove Duplicates from Sorted Array 26. Remove Element 27. Implement strStr() 28. Divide Two Integers 29. Substring with Concatenation of All Words 30. Next Permutation 31. Longest Valid Parentheses 32. Search in Rotated Sorted Array 33. Search for a Range 34. Find First and Last Position of Element in Sorted Array 35. Valid Sudoku 36. Sudoku Solver 37. Count and Say 38. Combination Sum 39. Combination Sum II 40. First Missing Positive 41. Trapping Rain Water 42. Jump Game 43. Merge Intervals 44. Insert Interval 45. Unique Paths 46. Minimum Path Sum 47. Climbing Stairs 48. Permutations 49. Permutations II 50. Rotate Image 51. Group Anagrams 52. Pow(x, n) 53. Maximum Subarray 54. Spiral Matrix 55. Jump Game II 56. Merge k Sorted Lists 57. Insertion Sort List 58. Sort List 59. Largest Rectangle in Histogram 60. Valid Number 61. Word Search 62. Minimum Window Substring 63. Unique Binary Search Trees 64. Unique Binary Search Trees II 65. Interleaving String 66. Maximum Product Subarray 67. Binary Tree Inorder Traversal 68. Binary Tree Preorder Traversal 69. Binary Tree Postorder Traversal 70. Flatten Binary Tree to Linked List 71. Construct Binary Tree from Preorder and Inorder Traversal 72. Construct Binary Tree from Inorder and Postorder Traversal 73. Binary Tree Level Order Traversal 74. Binary Tree Zigzag Level Order Traversal 75. Convert Sorted Array to Binary Search Tree 76. Convert Sorted List to Binary Search Tree 77. Recover Binary Search Tree 78. Sum Root to Leaf Numbers 79. Path Sum 80. Path Sum II 81. Binary Tree Maximum Path Sum 82. Populating Next Right Pointers in Each Node 83. Populating Next Right Pointers in Each Node II 84. Reverse Linked List 85. Reverse Linked List II 86. Partition List 87. Rotate List 88. Remove Duplicates from Sorted List 89. Remove Duplicates from Sorted List II 90. Intersection of Two Linked Lists 91. Linked List Cycle 92. Linked List Cycle II 93. Reorder List 94. Binary Tree Upside Down 95. Binary Tree Right Side View 96. Palindrome Linked List 97. Convert Binary Search Tree to Sorted Doubly Linked List 98. Lowest Common Ancestor of a Binary Tree 99. Lowest Common Ancestor of a Binary Search Tree 100. Binary Tree Level Order Traversal II
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值