Balanced Binary Tree (E)
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]:
3
/ \
9 20
/ \
15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return false.
题意
判断指定树是否为平衡二叉树,即对于树中任意一个结点,它的左子树和右子树高度之差不大于1。
思路
在递归求各结点高度的同时,判断当前结点的左子树和右子树高度之差是否大于1。
代码实现
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
boolean isBalanced = true;
public boolean isBalanced(TreeNode root) {
getHeight(root);
return isBalanced;
}
private int getHeight(TreeNode x) {
// 空结点时返回高度
// 当已经确定该树不平衡时,无需再向下递归
if (x == null || !isBalanced) {
return 0;
}
int lHeight = getHeight(x.left);
int rHeight = getHeight(x.right);
if (Math.abs(lHeight - rHeight) > 1) {
isBalanced = false;
}
return Math.max(lHeight, rHeight) + 1;
}
}
本文介绍了一种判断二叉树是否平衡的算法,通过递归求各结点高度并检查左右子树高度差,确保树的高度平衡。适用于数据结构与算法学习。

被折叠的 条评论
为什么被折叠?



