Tutorial 1: Overview of PE file format

本文深入讲解了Win32平台下的PE文件格式结构,包括DOS MZ头、DOS存根、PE头、节表及各节的作用。通过将PE文件比喻为逻辑磁盘,详细解释了PE加载器如何加载PE文件到内存中,并赋予不同节相应的属性。

Iczelion's Win32 Assembly Homepage

This is the complete rewrite of the old PE tutorial no1 which I considered the worst tutorial I have ever written. So I decided to replace it with this new one.

PE stands for Portable Executable. It's the native file format of Win32. Its specification is derived somewhat from the Unix Coff (common object file format). The meaning of "portable executable" is that the file format is universal across win32 platform: the PE loader of every win32 platform recognizes and uses this file format even when Windows is running on CPU platforms other than Intel. It doesn't mean your PE executables would be able to port to other CPU platforms without change. Every win32 executable (except VxDs and 16-bit Dlls) uses PE file format. Even NT's kernel mode drivers use PE file format. Thus studying the PE file format gives you valuable insights into the structure of Windows.

Let's jump into the general outline of PE file format without further ado.

DOS MZ header
DOS stub
PE header
Section table
Section 1
Section 2
Section ...
Section n

The above picture is the general layout of a PE file. All PE files (even 32-bit DLLs) must start with a simple DOS MZ header. We usually aren't interested in this structure much. It's provided in the case when the program is run from DOS, so DOS can recognize it as a valid executable and can thus run the DOS stub which is stored next to the MZ header. The DOS stub is actually a valid EXE that is executed in case the operating system doesn't know about PE file format. It can simply display a string like "This program requires Windows" or it can be a full-blown DOS program depending on the intent of the programmer. We are also not very interested in DOS stub: it's usually provided by the assembler/compiler. In most case, it simply uses int 21h, service 9 to print a string saying "This program cannot run in DOS mode".

After the DOS stub comes the PE header. The PE header is a general term for the PE-related structure named IMAGE_NT_HEADERS. This structure contains many essential fields that are used by the PE loader. We will be quite familiar with it as you know more about PE file format. In the case the program is executed in the operating system that knows about PE file format, the PE loader can find the starting offset of the PE header from the DOS MZ header. Thus it can skip the DOS stub and go directly to the PE header which is the real file header.

The real content of the PE file is divided into blocks called sections. A section is nothing more than a block of data with common attributes such as code/data, read/write etc. You can think of a PE file as a logical disk. The PE header is the boot sector and the sections are files in the disk. The files can have different attributes such as read-only, system, hidden, archive and so on. I want to make it clear from this point onwards that the grouping of data into a section is done on the common attribute basis: not on logical basis. It doesn't matter how the code/data are used , if the data/code in the PE file have the same attribute, they can be lumped together in a section. You should not think of a section as "data", "code" or some other logical concepts: sections can contain both code and data provided that they have the same attribute. If you have a block of data that you want to be read-only, you can put that data in the section that is marked as read-only. When the PE loader maps the sections into memory, it examines the attributes of the sections and gives the memory block occupied by the sections the indicated attributes.

If we view the PE file format as a logical disk, the PE header as the boot sector and the sections as files, we still don't have enough information to find out where the files reside on the disk, ie. we haven't discussed the directory equivalent of the PE file format. Immediately following the PE header is the section table which is an array of structures. Each structure contains the information about each section in the PE file such as its attribute, the file offset, virtual offset. If there are 5 sections in the PE file, there will be exactly 5 members in this structure array. We can then view the section table as the root directory of the logical disk. Each member of the array is equvalent to the each directory entry in the root directory.

That's all about the physical layout of the PE file format. I'll summarize the major steps in loading a PE file into memory below:

  1. When the PE file is run, the PE loader examines the DOS MZ header for the offset of the PE header. If found, it skips to the PE header.
  2. The PE loader checks if the PE header is valid. If so, it goes to the end of the PE header.
  3. Immediately following the PE header is the section table. The PE header reads information about the sections and maps those sections into memory using file mapping. It also gives each section the attributes as specified in the section table.
  4. After the PE file is mapped into memory, the PE loader concerns itself with the logical parts of the PE file, such as the import table.

The above steps are oversimplification and are based on my own observation. There may be some inaccuracies but it should give you the clear picture of the process.

You should download LUEVELSMEYER's description about PE file format. It's very detailed and you should keep it as a reference.

标题基于Python的汽车之家网站舆情分析系统研究AI更换标题第1章引言阐述汽车之家网站舆情分析的研究背景、意义、国内外研究现状、论文方法及创新点。1.1研究背景与意义说明汽车之家网站舆情分析对汽车行业及消费者的重要性。1.2国内外研究现状概述国内外在汽车舆情分析领域的研究进展与成果。1.3论文方法及创新点介绍本文采用的研究方法及相较于前人的创新之处。第2章相关理论总结和评述舆情分析、Python编程及网络爬虫相关理论。2.1舆情分析理论阐述舆情分析的基本概念、流程及关键技术。2.2Python编程基础介绍Python语言特点及其在数据分析中的应用。2.3网络爬虫技术说明网络爬虫的原理及在舆情数据收集中的应用。第3章系统设计详细描述基于Python的汽车之家网站舆情分析系统的设计方案。3.1系统架构设计给出系统的整体架构,包括数据收集、处理、分析及展示模块。3.2数据收集模块设计介绍如何利用网络爬虫技术收集汽车之家网站的舆情数据。3.3数据处理与分析模块设计阐述数据处理流程及舆情分析算法的选择与实现。第4章系统实现与测试介绍系统的实现过程及测试方法,确保系统稳定可靠。4.1系统实现环境列出系统实现所需的软件、硬件环境及开发工具。4.2系统实现过程详细描述系统各模块的实现步骤及代码实现细节。4.3系统测试方法介绍系统测试的方法、测试用例及测试结果分析。第5章研究结果与分析呈现系统运行结果,分析舆情数据,提出见解。5.1舆情数据可视化展示通过图表等形式展示舆情数据的分布、趋势等特征。5.2舆情分析结果解读对舆情分析结果进行解读,提出对汽车行业的见解。5.3对比方法分析将本系统与其他舆情分析系统进行对比,分析优劣。第6章结论与展望总结研究成果,提出未来研究方向。6.1研究结论概括本文的主要研究成果及对汽车之家网站舆情分析的贡献。6.2展望指出系统存在的不足及未来改进方向,展望舆情
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值