作者:Valery Ochkov [http://twt.mpei.ac.ru/ochkov/v_ochkov.htm]
介绍
restart;
with(ThermophysicalData);
with(Units[Standard]);
图示为最简单的理想联合[二元]循环方案,即使用过热蒸汽的汽轮机循环[6-7]。在该装置中,锅炉[6-9]的燃烧器被燃气轮机装置[布雷顿循环:1-4]所取代,该燃气轮机装置配备了空气压缩机[1-2]、燃烧室[2-3]、燃气轮机[3-4]和另一台发电机。

计算
蒸汽轮机循环
输入数据:
t_6 := (480 + 273.15) * K; p_6 := 9 * MPa; p_7 := 4.76 * kPa;
t_6 := 753.15 K
p_6 := 9 MPa
p_7 := 4.76 kPa [2.1.1]
新蒸汽(汽轮机入口)的比熵:
s_6 := Property(entropy, pressure = p_6, temperature = t_6, water);
6.593 kJ/(kg·K) [2.1.2]
新蒸汽(汽轮机入口)的比焓:
h_6 := Property(enthalpy, pressure = p_6, temperature = t_6, water);
3336.4 kJ/kg [2.1.3]
汽轮机出口蒸汽比熵(理想的蒸汽膨胀过程):
s_7 := s_6;
汽轮机出口处蒸汽的干度:
x_7 := Property(Q, pressure = p_7, entropy = s_7, water);
77.13 % [2.1.4]
汽轮机出口湿蒸汽温度:
t_7 := Property(temperature, pressure = p_7, Q = 1, water): t_7 - 273.15 * K;
32.00 °C [2.1.5]
汽轮机出口湿蒸汽的比焓:
h_7 := Property(enthalpy, temperature = t_7, Q = x_7, water);
2004.4 kJ/kg [2.1.6]
蒸汽在汽轮机中的比功:
w_st := h_6 - h_7;
1332.0 kJ/kg [2.1.7]
冷凝器温度下饱和线上水的比焓:
hw_7 := Property(enthalpy, temperature = t_7, Q = 0, water);
134.1 kJ/kg [2.1.8]
冷凝器温度下饱和线上水的比熵:
sw_7 := Property(entropy, temperature = t_7, Q = 0, water);
0.4643 kJ/(kg·K) [2.1.9]
凝结水的比焓
h_8 := hw_7;
给水压力
p_9 := p_6;
给水的比熵(泵中的理想过程):
s_9 := sw_7;
给水温度:
t_9 := Property(temperature, pressure = p_9, entropy = s_9, water): t_9 - 273.15 * K;
32.22 °C [2.1.10]
给水的比焓:
h_9 := Property(enthalpy, pressure = p_9, temperature = t_9, water);
143.1 kJ/kg [2.1.11]
给水泵的比有用功:
w_p := h_9 - hw_7;
9.023 kJ/kg [2.1.12]
供给锅炉的比热:
q_b := h_6 - h_9;
3193.3 kJ/kg [2.1.13]
因此,蒸汽轮机循环的热效率为:
η_tst := (w_st - w_p) / q_b;
41.43 % [2.1.14]
燃气轮机循环
输入数据:
t_1 := (15 + 273.15) * K; p_1 := 0.1 * MPa; p_2 := 1 * MPa; t_3 := (1100 + 273.15) * K; t_5 := (130 + 273.15) * K;
t_1 := 288.15 K
p_1 := 0.1 MPa
p_2 := 1 MPa
t_3 := 1373.15 K
t_5 := 403.15 K [2.2.1]
新鲜空气的比焓
h_1 := Property(enthalpy, pressure = p_1, temperature = t_1, air);
414.38 kJ/kg [2.2.2]
新鲜空气的比熵
s_1 := Property(entropy, pressure = p_1, temperature = t_1, air);
3.8500 kJ/(kg·K) [2.2.3]
压缩机出口空气的比熵、温度和比焓
s_2 := s_1:
t_2 := Property(temperature, pressure = p_2, entropy = s_2, air): t_2 - 273.15 * K;
279.46 °C [2.2.4]
h_2 := Property(enthalpy, pressure = p_2, temperature = t_2, air);
683.60 kJ/kg [2.2.5]
进入燃气轮机的气体压力、比熵和比焓
p_3 := p_2:
s_3 := Property(entropy, pressure = p_3, temperature = t_3, air);
4.867 kJ/(kg·K) [2.2.6]
h_3 := Property(enthalpy, pressure = p_3, temperature = t_3, air);
1610.34 kJ/kg [2.2.7]
燃气轮机出口气体压力、比熵、温度和比焓
p_4 := p_1:
s_4 := s_3:
t_4 := Property(temperature, pressure = p_4, entropy = s_4, air): t_4 - 273.15 * K;
498.01 °C [2.2.8]
h_4 := Property(enthalpy, pressure = p_4, temperature = t_4, air);
916.82 kJ/kg [2.2.9]
供给燃烧室的比热:
q_1 := h_3 - h_2;
926.74 kJ/kg [2.2.10]
燃气轮机的比功:
w_gt := h_3 - h_4;
693.52 kJ/kg [2.2.11]
空气压缩机的比功:
w_c := h_2 - h_1;
269.23 kJ/kg [2.2.12]
因此,燃气轮机循环的热效率为:
η_tgt := (w_gt - w_c) / q_1;
45.78 % [2.2.13]
联合[二元]循环
蒸汽锅炉出口气体压力和比焓
p_5 := p_4:
h_5 := Property(enthalpy, pressure = p_5, temperature = t_5, air);
530.5 kJ/kg [2.3.1]
气体与蒸汽的质量流量比
m := (h_6 - h_9) / (h_4 - h_5);
8.265 [2.3.2]
供给燃烧室的比热:
q_1 := m * (h_3 - h_2);
7659.4 kJ/kg [2.3.3]
燃气轮机循环的比功
w_gtc := (h_3 - h_4) - (h_2 - h_1);
424.3 kJ/kg [2.3.4]
蒸汽轮机循环的比功
w_stc := (h_6 - h_7) - (h_9 - h_8);
1323.0 kJ/kg [2.3.5]
因此,联合[二元]循环的热效率高于单独的蒸汽或燃气轮机循环:
η_tbc := (m * w_gtc + w_stc) / q_1;
63.06 % [2.3.6]
T-s 图
静态图

t__triple := 273.16*Unit('K');
t__critical := 647.096*Unit('K');
水在饱和线上的比熵随温度变化函数
wspSSWT := T → Property(entropy, temperature = T, Q = 0, H2O):
p1 := plot([wspSSWT(t), t, t = (t_triple / K) .. (t_critical / K)], color = "Blue", thickness = 1, linestyle = "solid", legend = "Water on saturated line"):
蒸汽在饱和线上的比熵随温度变化函数
wspSSST := T → Property(entropy, temperature = T, Q = 1, H2O):
p2 := plot([wspSSST(t), t, t = (t_triple / K) .. (t_critical / K)], color = "Red", thickness = 1, linestyle = "solid", legend = "Steam on saturated line"):
s_9 := Property(entropy, pressure = p_9, temperature = t_7, water):
wspTPS := (p, s) → Property(temperature, pressure = p, entropy = s, H2O):
p3 := plot([s, wspTPS(p_6 / Pa, s), s = (s_9 / (Jkg^(-1)K^(-1))) .. (s_6 / (Jkg^(-1)K^(-1)))], thickness = 1, color = "Black", legend = "Boiler"):
p4 := plots:-pointplot([[(s_6 / (Jkg^(-1)K^(-1))), (t_6 / K)], [(s_6 / (Jkg^(-1)K^(-1))), (t_7 / K)]], connect = true, thickness = 1, color = ["Red", "Blue"], legend = "Steam expansion in turbine"):
p5 := plots:-pointplot([[(s_6 / (Jkg^(-1)K^(-1))), (t_7 / K)], [(s_9 / (Jkg^(-1)K^(-1))), (t_7 / K)]], connect = true, thickness = 1, color = ["Red", "Blue"], legend = "Condenser"):
p6 := plots:-pointplot([[(s_1 / (Jkg^(-1)K^(-1))), (t_1 / K)], [(s_1 / (Jkg^(-1)K^(-1))), (t_2 / K)]], connect = true, thickness = 3, color = "Brown", legend = "Compressor"):
p7 := plots:-pointplot([[(s_4 / (Jkg^(-1)K^(-1))), (t_4 / K)], [(s_4 / (Jkg^(-1)K^(-1))), (t_3 / K)]], connect = true, thickness = 3, color = "Green", legend = "Gas turbine"):
wspgTPS := (p, s) → Property(temperature, pressure = p, entropy = s, air):
p8 := plot([s, wspgTPS(p_2 / Pa, s), s = (s_2 / (Jkg^(-1)K^(-1))) .. (s_3 / (Jkg^(-1)K^(-1)))], thickness = 3, color = "Orange", legend = "Combustion chamber"):
p9 := plot([s, wspgTPS(p_1 / Pa, s), s = (s_2 / (Jkg^(-1)K^(-1))) .. (s_3 / (Jkg^(-1)K^(-1)))], thickness = 3, color = "Gold", legend = "Atmosphere"):
动态图:

h-s 图
作为温度函数的饱和线上水的比焓
wspHSWT := T → Property(enthalpy, temperature = T, Q = 0, H2O):
p10 := plot([wspSSWT(t), wspHSWT(t), t = (t_triple / K) .. (t_critical / K)], thickness = 1, linestyle = "solid", legend = "Water on saturated line"):
作为温度函数的饱和线上蒸汽的比焓
wspHSST := T → Property(enthalpy, temperature = T, Q = 1, H2O):
p11 := plot([wspSSST(t), wspHSST(t), t = (t_triple / K) .. (t_critical / K)], color = "Red", thickness = 1, linestyle = "solid", legend = "Steam on saturated line"):
wspHPS := (p, s) → Property(enthalpy, pressure = p, entropy = s, H2O):
p12 := plot([s, wspHPS(p_6 / Pa, s), s = (s_9 / (Jkg^(-1)K^(-1))) .. (s_6 / (Jkg^(-1)K^(-1)))], thickness = 1, color = "Black", legend = "Boiler"):
p13 := plots:-pointplot([[(s_6 / (Jkg^(-1)K^(-1))), (h_6 / (Jkg^(-1)))], [(s_6 / (Jkg^(-1)K^(-1))), (h_7 / (Jkg^(-1)))]], connect = true, thickness = 1, color = ["Red", "Blue"], legend = "Steam expansion in turbine"):
p14 := plot([s, wspHPS(p_7 / Pa, s), s = (s_9 / (Jkg^(-1)K^(-1))) .. (s_6 / (Jkg^(-1)K^(-1)))], thickness = 1, color = "Blue", legend = "Condenser"):
p15 := plots:-pointplot([[(s_1 / (Jkg^(-1)K^(-1))), (h_1 / (Jkg^(-1)))], [(s_1 / (Jkg^(-1)K^(-1))), (h_2 / (Jkg^(-1)))]], connect = true, thickness = 3, color = "Brown", legend = "Compressor"):
p16 := plots:-pointplot([[(s_4 / (Jkg^(-1)K^(-1))), (h_4 / (Jkg^(-1)))], [(s_4 / (Jkg^(-1)K^(-1))), (h_3 / (Jkg^(-1)))]], connect = true, thickness = 3, color = "Green", legend = "Gas turbine"):
wspgHPS := (p, s) → Property(enthalpy, pressure = p, entropy = s, air):
p17 := plot([s, wspgHPS(p_2 / Pa, s), s = (s_2 / (Jkg^(-1)K^(-1))) .. (s_3 / (Jkg^(-1)K^(-1)))], thickness = 3, color = "Orange", legend = "Combustion chamber"):
p18 := plot([s, wspgHPS(p_1 / Pa, s), s = (s_2 / (Jkg^(-1)K^(-1))) .. (s_3 / (Jkg^(-1)K^(-1)))], thickness = 3, color = "Gold", legend = "Atmosphere"):
动态图:
plots:-display(p10, p11, p12, p13, p14, p15, p16, p17, p18, labels = [s * [J/(kg*K)], h * [J/kg]], size = [1200, 700], gridlines);

由 Valery Ochkov 创建于 2016年8月3日
Maple文件下载地址:https://www.maplesoft.com/applications/Detail.aspx?id=154035


被折叠的 条评论
为什么被折叠?



