敏感词汇过滤(单例)

本文介绍了一种基于DFA算法的敏感词过滤方法,并提供了详细的Java实现代码。该方法能够高效地进行敏感词检测和替换,支持最小匹配和最大匹配规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 调用过滤方法

SensitivewordFilter filter =   SensitivewordFilter.getInstance();
text = filter.replaceSensitiveWord(text, 1,"*");

2.SensitivewordFilter 类

public class SensitivewordFilter {
    private Map sensitiveWordMap = null;
    public static int minMatchTYpe = 1;      //最小匹配规则
    public static int maxMatchType = 2;      //最大匹配规则

    private  Set<String> filters=null;

    private  SensitivewordFilter(){
        SensitiveFilterBo sensitiveFilterBo =   SpringContextUtils.getBean(SensitiveFilterBo.beanName,SensitiveFilterBo.class);
        if(null!=sensitiveFilterBo){
            List<String> filterList =sensitiveFilterBo.queryString();
            this.filters = new HashSet(filterList);
            this.sensitiveWordMap = new SensitiveWordInit().initKeyWord(this.filters);
        }
    }

    private static SensitivewordFilter instance =   new SensitivewordFilter();

    public static   SensitivewordFilter getInstance(){
        return  instance;
    }



    /**
     * 判断文字是否包含敏感字符
     * @author chenming
     * @date 2014420日 下午4:28:30
     * @param txt  文字
     * @param matchType  匹配规则&nbsp;1:最小匹配规则,2:最大匹配规则
     * @return 若包含返回true,否则返回false
     * @version 1.0
     */
    public boolean isContaintSensitiveWord(String txt,int matchType){
        boolean flag = false;
        for(int i = 0 ; i < txt.length() ; i++){
            int matchFlag = this.CheckSensitiveWord(txt, i, matchType); //判断是否包含敏感字符
            if(matchFlag > 0){    //大于0存在,返回true
                flag = true;
            }
        }
        return flag;
    }

    /**
     * 获取文字中的敏感词
     * @author chenming
     * @date 2014420日 下午5:10:52
     * @param txt 文字
     * @param matchType 匹配规则&nbsp;1:最小匹配规则,2:最大匹配规则
     * @return
     * @version 1.0
     */
    public Set<String> getSensitiveWord(String txt , int matchType){
        Set<String> sensitiveWordList = new HashSet<String>();

        for(int i = 0 ; i < txt.length() ; i++){
            int length = CheckSensitiveWord(txt, i, matchType);    //判断是否包含敏感字符
            if(length > 0){    //存在,加入list                sensitiveWordList.add(txt.substring(i, i+length));
                i = i + length - 1;    //1的原因,是因为for会自增
            }
        }

        return sensitiveWordList;
    }

    /**
     * 替换敏感字字符
     * @author chenming
     * @date 2014420日 下午5:12:07
     * @param txt
     * @param matchType
     * @param replaceChar 替换字符,默认*
     * @version 1.0
     */
    public String replaceSensitiveWord(String txt,int matchType,String replaceChar){
        String resultTxt = txt;
        Set<String> set = getSensitiveWord(txt, matchType);     //获取所有的敏感词
        Iterator<String> iterator = set.iterator();
        String word = null;
        String replaceString = null;
        while (iterator.hasNext()) {
            word = iterator.next();
            replaceString = getReplaceChars(replaceChar, word.length());
            resultTxt = resultTxt.replaceAll(word, replaceString);
        }

        return resultTxt;
    }

    /**
     * 获取替换字符串
     * @author chenming
     * @date 2014420日 下午5:21:19
     * @param replaceChar
     * @param length
     * @return
     * @version 1.0
     */
    private String getReplaceChars(String replaceChar,int length){
        String resultReplace = replaceChar;
        for(int i = 1 ; i < length ; i++){
            resultReplace += replaceChar;
        }

        return resultReplace;
    }

    /**
     * 检查文字中是否包含敏感字符,检查规则如下:<br>
     * @author chenming
     * @date 2014420日 下午4:31:03
     * @param txt
     * @param beginIndex
     * @param matchType
     * @return,如果存在,则返回敏感词字符的长度,不存在返回0
     * @version 1.0
     */
    public int CheckSensitiveWord(String txt,int beginIndex,int matchType){
        boolean  flag = false;    //敏感词结束标识位:用于敏感词只有1位的情况
        int matchFlag = 0;     //匹配标识数默认为0
        char word = 0;
        Map nowMap = sensitiveWordMap;
        for(int i = beginIndex; i < txt.length() ; i++){
            word = txt.charAt(i);
            nowMap = (Map) nowMap.get(word);     //获取指定key
            if(nowMap != null){     //存在,则判断是否为最后一个
                matchFlag++;     //找到相应key,匹配标识+1
                if("1".equals(nowMap.get("isEnd"))){       //如果为最后一个匹配规则,结束循环,返回匹配标识数
                    flag = true;       //结束标志位为true
                    if(SensitivewordFilter.minMatchTYpe == matchType){    //最小规则,直接返回,最大规则还需继续查找
                        break;
                    }
                }
            }
            else{     //不存在,直接返回
                break;
            }
        }
        if(matchFlag < 2 || !flag){        //长度必须大于等于1,为词
            matchFlag = 0;
        }
        return matchFlag;
    }

    public static void main(String[] args) {
//        ApplicationContext context = new ClassPathXmlApplicationContext("classpath:spring/*.xml");
//        ApplicationContext context = new ClassPathXmlApplicationContext(new String[] {"spring/applicationContext.xml"});
//        SensitiveFilterBo   sensitiveFilterBo =(SensitiveFilterBo)context.getBean("sensitiveFilterBo");
//        List<String> filters = sensitiveFilterBo.queryString();
//        Set set = new HashSet(filters);
//        SensitivewordFilter filter = new SensitivewordFilter(set);
//        System.out.println("敏感词的数量1" + filters.size());
//        System.out.println("敏感词的数量2" + filter.sensitiveWordMap.size());
//        String string = "太多123参数三级片 深人静的晚上,关上电话静静的发呆着。";
//        System.out.println("待检测语句字数:" + string.length());
//        long beginTime = System.currentTimeMillis();
//        Set<String> setResult = filter.getSensitiveWord(string, 1);
//        String strReust = filter.replaceSensitiveWord(string, 1,"*");
//        long endTime = System.currentTimeMillis();
//        System.out.println("结果: "+strReust);
//        System.out.println("语句中包含敏感词的个数为:" + setResult.size() + "。包含:" + setResult);
//        System.out.println("总共消耗时间为:" + (endTime - beginTime));
    }

3.SensitiveWordInit 类

public class SensitiveWordInit {
    private String ENCODING = "GBK";    //字符编码
    @SuppressWarnings("rawtypes")
    public HashMap sensitiveWordMap;

    public SensitiveWordInit(){
        super();
    }

    /**
     * @author chenming
     * @date 2014420日 下午2:28:32
     * @version 1.0
     */
    public Map initKeyWord(Set<String> filters){
        try {
            //读取敏感词库
//            Set<String> keyWordSet = readSensitiveWordFile();
            //将敏感词库加入到HashMap            addSensitiveWordToHashMap(filters);
            //spring获取application,然后application.setAttribute("sensitiveWordMap",sensitiveWordMap);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return sensitiveWordMap;
    }

    /**
     * 读取敏感词库,将敏感词放入HashSet中,构建一个DFA算法模型:<br>
     * = {
     *      isEnd = 0
     *      = {<br>
     *          isEnd = 1
     *           = {isEnd = 0
     *                = {isEnd = 1}
     *                }
     *           = {
     *                isEnd = 0
     *                = {
     *                    isEnd = 1
     *                   }
     *             }
     *           }
     *      }
     *  = {
     *      isEnd = 0
     *      = {
     *         isEnd = 0
     *         = {
     *              isEnd = 0
     *              = {
     *                   isEnd = 1
     *                  }
     *              }
     *         }
     *      }
     * @author chenming
     * @date 2014420日 下午3:04:20
     * @param keyWordSet  敏感词库
     * @version 1.0
     */
    private void addSensitiveWordToHashMap(Set<String> keyWordSet) {
        sensitiveWordMap = new HashMap(keyWordSet.size());     //初始化敏感词容器,减少扩容操作
        String key = null;
        Map nowMap = null;
        Map<String, String> newWorMap = null;
        //迭代keyWordSet
        Iterator<String> iterator = keyWordSet.iterator();
        while(iterator.hasNext()){
            key = iterator.next();    //关键字
            nowMap = sensitiveWordMap;
            for(int i = 0 ; i < key.length() ; i++){
                char keyChar = key.charAt(i);       //转换成char                Object wordMap = nowMap.get(keyChar);       //获取

                if(wordMap != null){        //如果存在该key,直接赋值
                    nowMap = (Map) wordMap;
                }
                else{     //不存在则,则构建一个map,同时将isEnd设置为0,因为他不是最后一个
                    newWorMap = new HashMap<String,String>();
                    newWorMap.put("isEnd", "0");     //不是最后一个
                    nowMap.put(keyChar, newWorMap);
                    nowMap = newWorMap;
                }

                if(i == key.length() - 1){
                    nowMap.put("isEnd", "1");    //最后一个
                }
            }
        }
    }

    /**
     * 读取敏感词库中的内容,将内容添加到set集合中
     * @author chenming
     * @date 2014420日 下午2:31:18
     * @return
     * @version 1.0
     * @throws Exception
     */
    private Set<String> readSensitiveWordFile() throws Exception{
        Set<String> set = null;

        File file = new File("D:\\SensitiveWord.txt");    //读取文件
        InputStreamReader read = new InputStreamReader(new FileInputStream(file),ENCODING);
        try {
            if(file.isFile() && file.exists()){      //文件流是否存在
                set = new HashSet<String>();
                BufferedReader bufferedReader = new BufferedReader(read);
                String txt = null;
                while((txt = bufferedReader.readLine()) != null){    //读取文件,将文件内容放入到set                    set.add(txt);
                }
            }
            else{         //不存在抛出异常信息
                throw new Exception("敏感词库文件不存在");
            }
        } catch (Exception e) {
            throw e;
        }finally{
            read.close();     //关闭文件流
        }
        return set;
    }

sql 文件

下载地址http://download.youkuaiyun.com/download/maple980326/10160543

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值