Task04 数据完全存于内存的数据集类&节点预测和链接预测
一、InMemory数据集类
-
为什么要将数据集存到内存?加速?
-
占用内存有限的数据集,可以将其整个存于内存
-
PyG中通过继承InMemoryDataset类来自定义一个数据可全部存于内存的数据集类
class InMemoryDataset(root: Optional[str] = None, transform: Optional[Callable] = None, pre_transform: Optional[Callable] = None, pre_filter: Optional[Callable] = None)
二、InMemoryDataset数据集类实例
#`PlanetoidPubMed`数据集类的构造
import os.path as osp
import torch
from torch_geometric.data import (InMemoryDataset, download_url)
from torch_geometric.io import read_planetoid_data
class PlanetoidPubMed(InMemoryDataset):
r""" 节点代表文章,边代表引文关系。
训练、验证和测试的划分通过二进制掩码给出。
参数:
root (string): 存储数据集的文件夹的路径
transform (callable, optional): 数据转换函数,每一次获取数据时被调用。
pre_transform (callable, optional): 数据转换函数,数据保存到文件前被调用。
"""
url = 'https://github.com/kimiyoung/planetoid/raw/master/data'
def __init__(self, root, transform=None, pre_transform=None):
super(PlanetoidPubMed, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_dir(self):
return osp.join(self.root, 'raw')
@property
def processed_dir(self):
return osp.join(self.root, 'processed')
@property
def raw_file_names(self):
names = ['x', 'tx', 'allx', 'y', 'ty', 'ally', 'graph', 'test.index']
return ['ind.pubmed.{}'.format(name) for name in names]
@property
def processed_file_names(self):
return 'data.pt'
def download(self):
for name in self.raw_file_names:
download_url('{}/{}'.format(self.url, name), self.raw_dir)
def process(self):
data = read_planetoid_data(self.raw_dir, 'pubmed')
data = data if self.pre_transform is None else self.pre_transform(data)
torch.save(self.collate([data]), self.processed_paths[0])
def __repr__(self):
return '{}()'.format(self.name)
三、节点预测任务实践
# 定义GAT网络
class GAT(torch.nn.Module):
def __init__(self, num_features, hidden_channels_list, num_classes):
super(GAT, self).__init__()
torch.manual_seed(12345)
hns = [num_features] + hidden_channels_list
conv_list = []
for idx in range(len(hidden_channels_list)):
conv_list.append((GATConv(hns[idx], hns[idx+1]), 'x, edge_index -> x'))
conv_list.append(ReLU(inplace=True),)
self.convseq = Sequential('x, edge_index', conv_list)
self.linear = Linear(hidden_channels_list[-1], num_classes)
def forward(self, x, edge_index):
x = self.convseq(x, edge_index)
x = F.dropout(x, p=0.5, training=self.training)
x = self.linear(x)
return x
使用torch_geometric.nn.Sequential将多个GATConv顺序连接
class GAT(torch.nn.Module):
def __init__(self, num_features, hidden_channels_list, num_classes):
super(GAT, self).__init__()
torch.manual_seed(12345)
hns = [num_features] + hidden_channels_list
conv_list = []
for idx in range(len(hidden_channels_list)):
conv_list.append((GATConv(hns[idx], hns[idx+1]), 'x, edge_index -> x'))
conv_list.append(ReLU(inplace=True),)
self.convseq = Sequential('x, edge_index', conv_list)
self.linear = Linear(hidden_channels_list[-1], num_classes)
def forward(self, x, edge_index):
x = self.convseq(x, edge_index)
x = F.dropout(x, p=0.5, training=self.training)
x = self.linear(x)
return x
四、边预测任务实践
from torch_geometric.datasets import Planetoid
from torch_geometric.utils import train_test_split_edges
import torch_geometric.transforms as T
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dataset = 'Cora'
path = osp.join('dataset', dataset)
# 读取Cora数据集
dataset = Planetoid(path, dataset, transform=T.NormalizeFeatures())
data = dataset[0]
ground_truth_edge_index = data.edge_index.to(device)
data.train_mask = data.val_mask = data.test_mask = data.y = None
# 划分数据集
data = train_test_split_edges(data)
data = data.to(device)
from torch_geometric.nn import GCNConv
# 构建神经网络
class Net(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super(Net, self).__init__()
self.conv1 = GCNConv(in_channels, 128)
self.conv2 = GCNConv(128, out_channels)
def encode(self, x, edge_index):
x = self.conv1(x, edge_index)
x = x.relu()
return self.conv2(x, edge_index)
def decode(self, z, pos_edge_index, neg_edge_index):
edge_index = torch.cat([pos_edge_index, neg_edge_index], dim=-1)
return (z[edge_index[0]] * z[edge_index[1]]).sum(dim=-1)
def decode_all(self, z):
prob_adj = z @ z.t()
return (prob_adj > 0).nonzero(as_tuple=False).t()
from torch_geometric.utils import negative_sampling
import torch.nn.functional as F
# 得到边的类别{0,1}
def get_link_labels(pos_edge_index, neg_edge_index):
num_links = pos_edge_index.size(1) + neg_edge_index.size(1)
link_labels = torch.zeros(num_links, dtype=torch.float)
link_labels[:pos_edge_index.size(1)] = 1.
return link_labels
def train(data, model, optimizer):
model.train()
# 进行负采样,使得样本数一致
neg_edge_index = negative_sampling(
edge_index=data.train_pos_edge_index,
num_nodes=data.num_nodes,
num_neg_samples=data.train_pos_edge_index.size(1))
optimizer.zero_grad()
z = model.encode(data.x, data.train_pos_edge_index)
link_logits = model.decode(z, data.train_pos_edge_index, neg_edge_index)
link_labels = get_link_labels(data.train_pos_edge_index, neg_edge_index).to(data.x.device)
loss = F.binary_cross_entropy_with_logits(link_logits, link_labels)
loss.backward()
optimizer.step()
return loss
from sklearn.metrics import roc_auc_score
@torch.no_grad()
def test(data, model):
model.eval()
z = model.encode(data.x, data.train_pos_edge_index)
results = []
for prefix in ['val', 'test']:
pos_edge_index = data[f'{prefix}_pos_edge_index']
neg_edge_index = data[f'{prefix}_neg_edge_index']
link_logits = model.decode(z, pos_edge_index, neg_edge_index)
# 得到正负类别概率
link_probs = link_logits.sigmoid()
link_labels = get_link_labels(pos_edge_index, neg_edge_index)
results.append(roc_auc_score(link_labels.cpu(), link_probs.cpu()))
return results
Copy to clipboardErrorCopied
model = Net(dataset.num_features, 64).to(device)
optimizer = torch.optim.Adam(params=model.parameters(), lr=0.01)
best_val_auc = test_auc = 0
for epoch in range(1, 101):
loss = train(data, model, optimizer)
val_auc, tmp_test_auc = test(data, model)
if val_auc > best_val_auc:
best_val_auc = val_auc
test_auc = tmp_test_auc
if epoch % 10 == 0:
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Val: {val_auc:.4f}, '
f'Test: {test_auc:.4f}')
z = model.encode(data.x, data.train_pos_edge_index)
final_edge_index = model.decode_all(z)
print('ground truth edge shape:', ground_truth_edge_index.shape)
print('final edge shape:', final_edge_index.shape)
Epoch: 010, Loss: 0.6887, Val: 0.7162, Test: 0.7226
Epoch: 020, Loss: 0.6375, Val: 0.7589, Test: 0.7226
Epoch: 030, Loss: 0.5488, Val: 0.8073, Test: 0.7603
Epoch: 040, Loss: 0.5130, Val: 0.8434, Test: 0.8180
Epoch: 050, Loss: 0.5016, Val: 0.8496, Test: 0.8253
Epoch: 060, Loss: 0.4948, Val: 0.8609, Test: 0.8353
Epoch: 070, Loss: 0.4843, Val: 0.8752, Test: 0.8453
Epoch: 080, Loss: 0.4702, Val: 0.9039, Test: 0.8725
Epoch: 090, Loss: 0.4514, Val: 0.9201, Test: 0.8961
Epoch: 100, Loss: 0.4522, Val: 0.9264, Test: 0.9007
ground truth edge shape: torch.Size([2, 10556])
final edge shape: torch.Size([2, 3256296])
五、参考资料
[DataWhale开源资料](Datawhale/team-learning-nlp - Gitee)
2117

被折叠的 条评论
为什么被折叠?



