Java 1.8 HashMap详解

本文详细解析了Java 8 HashMap的实现原理,包括构造函数、put方法、扩容机制和获取元素的过程。HashMap利用链表和红黑树处理冲突,当冲突超过7个时,链表转为红黑树,提高查找效率。此外,对比了HashMap在1.8与1.7版本中的区别,如1.8版中高位与低位异或的hash算法和优化后的扩容策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Java 8 HashMap 详解

HashMap 实现了Map接口,继承于 AbstractMap。利用散列表来实现 Key-Value 元素的存取。散列表是用链表数组实现的,每个列表被称为桶 (bucket)。利用 key 的 hashcode 来确保元素的唯一性。HashMap 不保证元素的顺序恒定不变,在扩充的过程中,键值对元素位置会被再分配。
这里主要基于 JDK1.8 版本的 HashMap 源码进行分析。Map 相关的类图如下所示:


图片来自于网络

HashMap构造

HashMap 有两个参数影响其性能:初始容量和加载因子。容量是哈希表中桶的数量,初始容量是哈希表在创建时的容量。加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度。
HashMap 提供了三种构造函数。第一种通过直接设置初始容量和加载因子。

/**
     * Constructs an empty HashMap with the specified initial
     * capacity and load factor.
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative 
     *         or the load factor is nonpositive       
     */
    public HashMap(int initialCapacity, float loadFactor) {
        //初始容量为负,则抛出
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        //大于最大容量则设为最大容量                                    
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        //检测加载因子是否是正数
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        //将初始容量转为向上最近的2的次方。例如初始为9转为16
        this.threshold = tableSizeFor(initialCapacity);
    }

第二种设置初始容量,使用默认的加载因子。

/**
     * Constructs an empty HashMap with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

第三种两个参数都使用默认的设置。初始容量16,加载因子0.75。

/**
     * Constructs an empty HashMap with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

构造函数主要完成两个参数的设置,真正初始化散列表是等到添加元素的时候才进行。

HashMap 主要方法

put 方法
 /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with key, or
     *         null if there was no mapping for key.
     *         (A null return can also indicate that the map
     *         previously associated null with key.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

先总结下整个流程,大体如下。

  1. 通过 key 获取 hashcode 值,再利用高低位16异或。
  2. 若桶为空,则申请。计算出位置索引进行添加。
  3. 无冲突,直接添加。有冲突添加在桶的尾部,当冲突超过七个,则转为红黑树。
  4. 若已存在,进行 value 替换。
  5. 插入成功后,若超过阈值,进行扩充。

具体的添加代码如下:

/**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //当table为空,则创建
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //计算出位置索引,桶为空则直接添加
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            //不为空的情况
            Node<K,V> e; K k;
            //判断Key是否已经存在
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //判断是否为红黑树,然后添加
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //是链表,判断是否已存在。不存在则添加到尾部。若冲突超过7个则转为红黑树
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //已存在,则进行是否覆盖操作
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //大于阈值,则扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
扩容机制

resize 方法主要进行初始化或扩充的处理。当 HashMap 的键值对的元素数量超过容量*加载因子,则需要进行容量扩展,防止更多的冲突出现,从而影响性能。因为底层是用数组保存的,扩容时候,需要重新申请数组,再将原始的添加到新数组里,当元素从原始数组里转移到新的数组中,其位置索引要么保持在原 index 处,或者保持在与原 index 的固定大小偏移处
具体代码如下:

/**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        //初始化判断
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            //判断是否超过最大容量
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //容量和阈值都翻倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        //初始化值
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //初始化时,计算新的上限
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            //
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        //若单个的元素,则直接计算位置索引,进行添加
                        newTab[e.hash & (newCap - 1)] = e;
                    //若为树,则将树
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //处理多个结点的链表,转移时分为两部分,原位置索引和相对偏移索引,采用尾插法,维持了结点相对位置。
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            //原位置
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            //原位置+oldCap
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        //将原位置的结点放入
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        //将原位置+oldCap的结点放入
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

当冲突以红黑树形态情况下,进行扩充时,将树转成两棵树,若树的的结点数小于等于UNTREEIFY_THRESHOLD,则转为链表形式。

/**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            //遍历整棵树。
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                //原索引
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                //原索引+偏移量
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                //判断是否转成链表形态
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        //进行树的处理,确保根节点在桶中
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }
获取元素

当需要从 HashMap 里通过 Key 的 hash 来获取元素时,先定位数组中的首个结点,若不同则比对红黑树中或者链表中是否存在。
具体代码如下:

   /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //直接判断命中
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                //在树中判断命中
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //在链表中判断命中
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

HashMap 1.8 与 1.7 对比

  1. 红黑树的出现,1.8 中当每个桶中的冲突超过 7 个时,链表则会转成红黑树,让 O(N) 访问效率转为O(logN)。
  2. 在 JDK 1.8 的实现中,优化了高位运算的算法,通过 hashCode() 的高 16 位异或低 16 位实现的,目的为了使得位置索引更离散些。
  3. 1.7 中 resize,只有当 size >= threshold 并且 table 中的那个槽中已经有 Entry 时,才会发生 resize。1.8 中只要大于 threshold 即扩容。
  4. 1.7 中添加元素时候,有冲突时,先遍历整个链表,确认是否已存在,不存在则进行头插法。而 1.8 中有冲突时候,链表形态下,是添加在尾部的。
  5. 1.7 中扩充时候,也是采用头插法,会导致之前元素相对位置倒置了。而 1.8 中扩充时,链表形态下,采用尾插法。之前元素相对位置未变化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值