Python学习之路_jupyter notebook

本博客通过Python的数据科学库对Anscombe四重奏数据集进行了详细的统计分析,并利用Seaborn可视化了所有四个数据集。展示了尽管数据集在统计属性上几乎相同,但它们之间的实际差异却很大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import random

import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm
import statsmodels.formula.api as smf

sns.set_context("talk")
# Anscombe’s quartet Anscombe’s quartet comprises of four datasets, and is rather famous. Why? You’ll find out in this exercise.
anascombe = pd.read_csv('data/anscombe.csv')
anascombe.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
datasetxy
0I10.08.04
1I8.06.95
2I13.07.58
3I9.08.81
4I11.08.33

Part 1

For each of the four datasets…
- Compute the mean and variance of both x and y
- Compute the correlation coefficient between x and y
- Compute the linear regression line: y=β0+β1x+ϵy=β0+β1x+ϵ (hint: use statsmodels and look at the Statsmodels notebook)

def get_data(data):
    return pd.Series([data['x'].mean(), data['x'].var(), data['y'].mean(), data['y'].var()],index=['x均值', 'x方差', 'y均值', 'y方差'])

dataset_name = anascombe.dataset.unique()
group = anascombe.groupby(by=list(["dataset"]))
for name in dataset_name:
    data = group.get_group(name)
    print('dataset: ', name)
    print(pd.DataFrame(get_data(data)))
    print('系数')
    print(data.corr(),'\n')
    x = data['x']
    X = sm.add_constant(data['x'])
    y = data['y']
    model = sm.OLS(y,X)
    results = model.fit()
    print(results.params)
    y_fitted = results.fittedvalues
    fig, ax = plt.subplots()
    ax.plot(x, y, 'o', label='data')
    ax.plot(x, y_fitted, 'r-',label='OLS')
    ax.legend(loc='best')
    plt.show()
    print('\n')
dataset:  I
             0
x均值   9.000000
x方差  11.000000
y均值   7.500909
y方差   4.127269
系数
          x         y
x  1.000000  0.816421
y  0.816421  1.000000 

const    3.000091
x        0.500091
dtype: float64

这里写图片描述

dataset:  II
             0
x均值   9.000000
x方差  11.000000
y均值   7.500909
y方差   4.127629
系数
          x         y
x  1.000000  0.816237
y  0.816237  1.000000 

const    3.000909
x        0.500000
dtype: float64

png

dataset:  III
            0
x均值   9.00000
x方差  11.00000
y均值   7.50000
y方差   4.12262
系数
          x         y
x  1.000000  0.816287
y  0.816287  1.000000 

const    3.002455
x        0.499727
dtype: float64

这里写图片描述

dataset:  IV
             0
x均值   9.000000
x方差  11.000000
y均值   7.500909
y方差   4.123249
系数
          x         y
x  1.000000  0.816521
y  0.816521  1.000000 

const    3.001727
x        0.499909
dtype: float64

这里写图片描述

Part 2

Using Seaborn, visualize all four datasets.

hint: use sns.FacetGrid combined with plt.scatter

    g = sns.FacetGrid(anascombe, col="dataset", size=4)
    g = g.map(plt.scatter, "x", "y", edgecolor="w")

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值