转载博客:http://blog.youkuaiyun.com/Koala_Tree
Class 2:改善深层神经网络:超参数调试、正则化以及优化
Week 2:优化算法
目录
1、Mini-batch 梯度下降法
对整个训练集进行梯度下降法的时候,我们必须处理整个训练数据集,然后才能进行一步梯度下降,即每一步梯度下降法需要对整个训练集进行一次处理,如果训练数据集很大的时候,如有500万或5000万的训练数据,处理速度就会比较慢。
但是如果每次处理训练数据的一部分即进行梯度下降法,则我们的算法速度会执行的更快。而处理的这些一小部分训练子集即称为Mini-batch。
(1)算法核心:
对于普通的梯度下降法,一个epoch只能进行一次梯度下降;而对于Mini-batch梯度下降法,一个epoch可以进行Mini-batch的个数次梯度下降。
(2)不同size大小的比较
普通的batch梯度下降法和Mini-batch梯度下降法代价函数的变化趋势,如下图所示:
2、指数加权平均
3、动量(Momentum)梯度下降法
动量梯度下降的基本思想就是计算梯度的指数加权平均数,并利用该梯度来更新权重。
在我们优化 Cost function 的时候,以下图所示的函数图为例:
- 在利用梯度下降法来最小化该函数的时候,每一次迭代所更新的代价函数值如图中蓝色线所示在上下波动,而这种幅度比较大波动,减缓了梯度下降的速度,而且我们只能使用一个较小的学习率来进行迭代。
- 如果用较大的学习率,结果可能会如紫色线一样偏离函数的范围,所以为了避免这种情况,只能用较小的学习率。
- 但是我们又希望在如图的纵轴方向梯度下降的缓慢一些,不要有如此大的上下波动,在横轴方向梯度下降的快速一些,使得能够更快的到达最小值点,而这里用动量梯度下降法既可以实现,如红色线所示。
算法实现
β常用的值是0.9。
在我们进行动量梯度下降算法的时候,由于使用了指数加权平均的方法。
- 原来在纵轴方向上的上下波动,经过平均以后,接近于0,纵轴上的波动变得非常的小;
- 但在横轴方向上,所有的微分都指向横轴方向,因此其平均值仍然很大。最终实现红色线所示的梯度下降曲线。
4、RMSprop
除了上面所说的Momentum梯度下降法,RMSprop(root mean square prop)也是一种可以加快梯度下降的算法。
同样算法的样例实现如下图所示:
这里假设参数b的梯度处于纵轴方向,参数w的梯度处于横轴方向(当然实际中是处于高维度的情况),利用RMSprop算法,可以减小某些维度梯度更新波动较大的情况,如图中蓝色线所示,使其梯度下降的速度变得更快,如图绿色线所示。
在如图所示的实现中,RMSprop将微分项进行平方,然后使用平方根进行梯度更新,同时为了确保算法不会除以0,平方根分母中在实际使用会加入一个很小的值如 ε=10−8 ε = 10 − 8 。
5、Adam优化算法
Adam 优化算法的基本思想就是将 Momentum 和 RMSprop 结合起来形成的一种适用于不同深度学习结构的优化算法。
6、学习率衰减
在我们利用 mini-batch 梯度下降法来寻找Cost function的最小值的时候,如果我们设置一个固定的学习速率α,则算法在到达最小值点附近后,由于不同batch中存在一定的噪声,使得不会精确收敛,而一直会在一个最小值点较大的范围内波动,如下图中蓝色线所示。
但是如果我们使用学习率衰减,逐渐减小学习速率α,在算法开始的时候,学习速率还是相对较快,能够相对快速的向最小值点的方向下降。但随着α的减小,下降的步伐也会逐渐变小,最终会在最小值附近的一块更小的区域里波动,如图中绿色线所示。
7、局部最优问题
在低纬度的情形下,我们可能会想象到一个Cost function 如左图所示,存在一些局部最小值点,在初始化参数的时候,如果初始值选取的不得当,会存在陷入局部最优点的可能性。
但是,如果我们建立一个神经网络,通常梯度为零的点,并不是如左图中的局部最优点,而是右图中的鞍点(叫鞍点是因为其形状像马鞍的形状)。
在一个具有高维度空间的函数中,如果梯度为0,那么在每个方向,Cost function可能是凸函数,也有可能是凹函数。但如果参数维度为2万维,想要得到局部最优解,那么所有维度均需要是凹函数,其概率为
2−20000
2
−
20000
,可能性非常的小。也就是说,在低纬度中的局部最优点的情况,并不适用于高纬度,我们在梯度为0的点更有可能是鞍点。
在高纬度的情况下:
- 几乎不可能陷入局部最小值点;
- 处于鞍点的停滞区会减缓学习过程,利用如Adam等算法进行改善。