| Time Limit: 5000MS | Memory Limit: 131072K | |
| Total Submissions: 31654 | Accepted: 8984 | |
| Case Time Limit: 2000MS | ||
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
Source
线段树,额,记得longlong就行了。
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef struct
{
int l,r,lazy;
long long num,tag;
}Tree;
Tree tree[500005];
void Build(int t,int l,int r)
{
int mid;
tree[t].l=l;
tree[t].r=r;
tree[t].tag=0;
tree[t].lazy=1;
if (l==r)
{
scanf("%lld",&tree[t].num);
return;
}
mid=(l+r)/2;
Build(2*t+1,l,mid);
Build(2*t+2,mid+1,r);
tree[t].num=tree[2*t+1].num+tree[2*t+2].num;
}
void Add(int t,int x,int y,long long z)
{
int l,r,mid;
l=tree[t].l;
r=tree[t].r;
if (x==l && y==r)
{
tree[t].lazy=1;
tree[t].tag+=z;
tree[t].num+=z*(r-l+1);
return;
}
mid=(l+r)/2;
if (tree[t].lazy==1)
{
tree[t].lazy=0;
Add(2*t+1,l,mid,tree[t].tag);
Add(2*t+2,mid+1,r,tree[t].tag);
tree[t].tag=0;
}
if (x<=mid) Add(2*t+1,x,min(y,mid),z);
if (y>mid) Add(2*t+2,max(x,mid+1),y,z);
tree[t].num=tree[2*t+1].num+tree[2*t+2].num;
}
long long Find(int t,int x,int y)
{
int mid,l,r;
l=tree[t].l;
r=tree[t].r;
if (l==x && y==r)
{
return tree[t].num;
}
mid=(l+r)/2;
if (tree[t].lazy==1)
{
tree[t].lazy=0;
Add(2*t+1,l,mid,tree[t].tag);
Add(2*t+2,mid+1,r,tree[t].tag);
tree[t].tag=0;
}
long long ans=0;
if (x<=mid) ans+=Find(2*t+1,x,min(mid,y));
if (y>mid) ans+=Find(2*t+2,max(mid+1,x),y);
return ans;
}
int main()
{
int i,j,n,m,x,y;
long long z;
char str[20];
while(scanf("%d%d",&n,&m)!=EOF)
{
Build(0,0,n-1);
while(m--)
{
scanf("%s",str);
if (str[0]=='Q')
{
scanf("%d%d",&x,&y);
printf("%lld\n",Find(0,x-1,y-1));
}
else
{
scanf("%d%d%lld",&x,&y,&z);
Add(0,x-1,y-1,z);
}
}
}
return 0;
}
本文介绍了一种处理整数序列的操作算法,包括在指定区间内增加数值和查询区间内的总和。算法通过线段树实现,适用于大规模数据处理且时间复杂度较低。
421

被折叠的 条评论
为什么被折叠?



