题目:
N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.
The people and seats are represented by an integer from 0 to 2N-1, the couples are numbered in order, the first couple being (0, 1), the second couple being (2, 3), and so on with the last couple being (2N-2, 2N-1).
The couples' initial seating is given by row[i] being the value of the person who is initially sitting in the i-th seat.
Example 1:
Input: row = [0, 2, 1, 3] Output: 1 Explanation: We only need to swap the second (row[1]) and third (row[2]) person.
Example 2:
Input: row = [3, 2, 0, 1] Output: 0 Explanation: All couples are already seated side by side.
Note:
len(row)is even and in the range of[4, 60].rowis guaranteed to be a permutation of0...len(row)-1.
思路:
采用贪心的思路:为了便于快速查找某个id的人所处的位置,我们定义一个哈希表,表示从某人的id到其在row中的位置。然后就开始扫描row中的偶数位。根据在该偶数位上的人的id,可以推出其另一半所处的位置。如果他的另一半不在他接下来的位置,那么我们就交换下一位置和它的另一半的位置(并且记得更新哈希表)。这样最后返回总共的交换次数即可。
在数学上可以漂亮的证明这种贪心策略是正确的,具体可以参见Cyclic permutation。我们实现的算法的时间复杂度为O(n),空间复杂度也为O(n)。
代码:
class Solution {
public:
int minSwapsCouples(vector<int>& row) {
unordered_map<int, int> hash; // map from person id to position
for (int i = 0; i < row.size(); ++i) {
hash[row[i]] = i;
}
int ret = 0;
for (int i = 0; i < row.size(); i += 2) {
int p1 = row[i];
int p2 = p1 % 2 == 0 ? p1 + 1 : p1 - 1; // its couple's id
if (row[i + 1] != p2) {
int p2_pos = hash[p2];
hash[row[i + 1]] = p2_pos;
hash[p2] = i + 1;
swap(row[i + 1], row[p2_pos]);
++ret;
}
}
return ret;
}
};
这篇博客详细介绍了LeetCode中的765题——Couples Holding Hands的解题报告。通过贪心策略,利用哈希表存储每个人的位置,遍历偶数位置找到情侣并进行交换,最终得到每对情侣相邻的解决方案。算法的时间复杂度和空间复杂度均为O(n)。示例和思路分析有助于理解问题解决过程。
1047

被折叠的 条评论
为什么被折叠?



