[Leetcode] 714. Best Time to Buy and Sell Stock with Transaction Fee 解题报告

本文介绍了一种算法,用于计算在给定股票价格和交易费用的情况下,通过买卖股票所能获得的最大利润。通过定义两种状态并迭代更新,实现了时间复杂度为O(n)、空间复杂度为O(1)的高效解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

Your are given an array of integers prices, for which the i-th element is the price of a given stock on day i; and a non-negative integer fee representing a transaction fee.

You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)

Return the maximum profit you can make.

Example 1:

Input: prices = [1, 3, 2, 8, 4, 9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
  • Buying at prices[0] = 1
  • Selling at prices[3] = 8
  • Buying at prices[4] = 4
  • Selling at prices[5] = 9The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

Note:

  • 0 < prices.length <= 50000.
  • 0 < prices[i] < 50000.
  • 0 <= fee < 50000.

    思路

    我们定义两个状态s0和s1,其中s0表示某天拥有0支股票时的最大收益,s1表示某天拥有1支股票时的最大收益。那么在第i天,如果卖掉一支股票可以获得更大收益,则卖掉股票;否则维持原来手里没有股票时的收益。而如果买一支股票可以获得更大的收益,则买一支股票(除了支付股票费用之外还需要支付手续费);否则维持原来手里还有一支股票。最终返回s0即可。

    算法的时间复杂度是O(n),空间复杂度是O(1)。

    代码

    class Solution {
    public:
        int maxProfit(vector<int>& prices, int fee) {
            int s0 = 0;
            int s1 = INT_MIN;
            for (int i = 0; i < prices.size(); ++i) {
                int temp = s0;
                s0 = max(s0, s1 + prices[i]);           // sell a stock at day[i]
                s1 = max(s1, temp - prices[i] - fee);   // buy a stock at day[i]
            }
            return s0;
        }
    };
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值