题目:
Imagine you have a special keyboard with the following keys:
Key 1: (A)
: Print one 'A' on screen.
Key 2: (Ctrl-A)
: Select the whole screen.
Key 3: (Ctrl-C)
: Copy selection to buffer.
Key 4: (Ctrl-V)
: Print buffer on screen appending it after what has already been printed.
Now, you can only press the keyboard for N times (with the above four keys), find out the maximum numbers of 'A' you can print on screen.
Example 1:
Input: N = 3 Output: 3 Explanation: We can at most get 3 A's on screen by pressing following key sequence: A, A, A
Example 2:
Input: N = 7 Output: 9 Explanation: We can at most get 9 A's on screen by pressing following key sequence: A, A, A, Ctrl A, Ctrl C, Ctrl V, Ctrl V
Note:
- 1 <= N <= 50
- Answers will be in the range of 32-bit signed integer.
思路:
1、动态规划:
和上一道题目比较类似:我们要生成n个‘A’可以有两种途径:1)在键盘上敲击n次‘A’;2)采用i步生成maxA(i)个‘A’,然后用n - i步执行1次Ctrl A,1次Ctrl C,以及n - i- 2次Ctrl V,这样最终就可以生成n - i - 1个maxA(i)。由于n - i - 2 >= 1,所以i <= n - 3。如果我们定义dp[i]表示i步可以生成的‘A’的最大个数,则可以方便地实现基于动态规划的版本。
2、递推法:
O(1)的时间复杂度和空间复杂度,不过我是真的没有看懂,给个链接吧:O(1) time O(1) space c++ solution, possibly shortest and fastest。
代码:
1、动态规划:
class Solution {
public:
int maxA(int N) {
vector<int> dp(N + 1, 0);
for (int i = 0; i <= N; ++i) {
dp[i] = i; // simply print 'A' i times
for (int j = 1; j <= i - 3; ++j) {
dp[i] = max(dp[i], dp[j] * (i - j - 1));
}
}
return dp[N];
}
};
2、递推法:
class Solution {
public:
int maxA(int N) {
if (N <= 6) {
return N;
}
if (N == 10) {
return 20;
}
int n = N / 5 + 1, n3 = n * 5 - 1 - N;
return pow(3, n3) * pow(4, n - n3);
}
};