题目:
A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], ... } subjected to the rule below.
Suppose the first element in S starts with the selection of element A[i] of index = i, the next element in S should be A[A[i]], and then A[A[A[i]]]… By that analogy, we stop adding right before a duplicate element occurs in S.
Example 1:
Input: A = [5,4,0,3,1,6,2] Output: 6 Explanation: A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2. One of the longest S[K]: S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}
Note:
- N is an integer within the range [1, 20,000].
- The elements of A are all distinct.
- Each element of A is an integer within the range [0, N-1].
思路:
这道题目给的Example 1有误,因为其output应该是4,而不是6。
把0 - (N - 1)这N个数打乱排列在数组中,它们就会形成1 - N个嵌套回路。如果对于对于任意0 <= i <= N - 1,都有nums[i] = i,那么显然最大的嵌套回路就是1;如果对于任意0 <= i <= N - 1,都有nums[i] = (i + 1) % N,那么显然最大嵌套回路就是N。所以我们试图以每个数组元素为起点,看看能够形成多大的嵌套回路,之后将该元素置为visited(本题目中我们将该元素的值置为-1)。由于嵌套回路之间是不可能重叠相交的,所以这样的重置不会影响其余嵌套回路。
虽然算法中有两重循环,但是其时间复杂度却是O(n),请读者分析为什么?^_^
代码:
class Solution {
public:
int arrayNesting(vector<int>& nums) {
int ret = 0, size = 0;
for (int i = 0; i < nums.size(); ++i) {
size = 0;
for (int k = i; nums[k] >= 0; ++size) { // try to start from i
int ak = nums[k];
nums[k] = -1; // mark nums[k] as visited;
k = ak;
}
ret = max(ret, size);
}
return ret;
}
};