题目:
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
- Search for a node to remove.
- If the node is found, delete the node.
Note: Time complexity should be O(height of tree).
Example:
root = [5,3,6,2,4,null,7] key = 3 5 / \ 3 6 / \ \ 2 4 7 Given key to delete is 3. So we find the node with value 3 and delete it. One valid answer is [5,4,6,2,null,null,7], shown in the following BST. 5 / \ 4 6 / \ 2 7 Another valid answer is [5,2,6,null,4,null,7]. 5 / \ 2 6 \ \ 4 7
思路:
我们的思路是:如果当前的key小于当前root值,则递归删除左子树;如果当前key大于当前root值,则递归删除右子树;如果key等于当前值了,那么就需要删除当前的root,可以分为三种情况进行处理:
1)root只有左子树:那么直接删除当前root,返回左子树即可;
2)root只有右子树:那么直接删除当前root,返回右子树即可;
3)如果root同时拥有左右子树:我们找到root中序遍历的下一个节点,并且交换两者的值,然后递归地在root的右子树上删除key即可(当然也可以在左子树上对称地进行处理)。
读者可以通过代码理解递归调用的妙处。此外我还看到一个针对一般二叉树节点删除的代码片段,虽然由于需要同时执行在左子树和右子树上的节点删除,造成一定的计算冗余,但是实现的代码反而更加精炼。
代码:
1、针对BST节点删除:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if (!root) {
return root;
}
if (root->val > key) { // key can only be in left child
root->left = deleteNode(root->left, key);
}
else if (root->val < key) { // key can only be in right child
root->right = deleteNode(root->right, key);
}
else { // we need to delete root now
if (!root->left) { // root only have right child
TreeNode* right = root->right;
delete root;
return right;
}
else if (!root->right) { // root only have left child
TreeNode* left = root->left;
delete root;
return left;
}
else { // root have both left and right children
TreeNode* successor = findMinNode(root->right); // find the inorder successor (the minimal node in right subtree)
root->val = successor->val;
root->right = deleteNode(root->right, successor->val);
}
}
return root;
}
private:
TreeNode* findMinNode(TreeNode *root) {
while (root->left) {
root = root->left;
}
return root;
}
};
2、针对一般树的节点删除:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if (!root) {
return NULL;
}
if (root->val == key) {
if (!root->right) { // root do not have right child, so we lift the left child
TreeNode* left = root->left;
delete root;
return left;
}
else { // find the next TreeNode in in-order traversal
TreeNode* right = root->right;
while (right->left) {
right = right->left;
}
swap(root->val, right->val);
}
}
root->left = deleteNode(root->left, key);
root->right = deleteNode(root->right, key);
return root;
}
};