题目:
You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example:
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3
2. 5 -> 2 -> 1
3. -3 -> 11
思路:
虽然在Leetcode中这道题目的level是easy,但我感觉要写出优雅的代码并不容易(至少我刚开始写的代码就一塌糊涂)。这里关键在于我们要覆盖掉所有情况,并且不重复计算。思路是:对于以root为根的树来说,我们可以将符合条件的path分为两类,一类是包含root的,一类是不包含root的。对于包含root的,我们用DFS函数来求解;而对于不包含root的path来说,我们就可以把它分为左右两棵子树来分别进行求解。最终的结果就是三者之和。下面的代码片段给出了具体实现,并且附加了详细解释。
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int pathSum(TreeNode* root, int sum) {
if (!root) {
return 0;
}
int ret = pathSum(root->left, sum) + pathSum(root->right, sum); // root not included in the path
return DFS(root, sum) + ret; // root included in the path
}
private:
int DFS(TreeNode* root, int sum) { // the numer of paths that begin from root
if (!root) {
return 0;
}
int ret = 0;
if (sum == root->val) { // the path that ends here
++ret;
}
ret += DFS(root->left, sum - root->val); // the paths that end somewhere in the left sub tree
ret += DFS(root->right, sum - root->val); // the paths that end somewhere in the right sub tree
return ret;
}
};
本文探讨了一道关于在二叉树中寻找特定路径和的问题。通过递归方法,文章详细介绍了如何统计从任意节点开始向下达到指定路径和的所有路径数量。特别地,文章提供了一个简洁有效的C++代码实现。
379

被折叠的 条评论
为什么被折叠?



