题目:
Equations are given in the format A / B = k
, where A
and B
are
variables represented as strings, and k
is a real number (floating point number). Given
some queries, return the answers. If the answer does not exist, return -1.0
.
Example:
Given a / b = 2.0, b / c = 3.0.
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? .
return [6.0, 0.5, -1.0, 1.0, -1.0 ].
The input is: vector<pair<string, string>> equations, vector<double>& values, vector<pair<string,
string>> queries
, where equations.size() == values.size()
, and the values are
positive. This represents the equations. Return vector<double>
.
According to the example above:
equations = [ ["a", "b"], ["b", "c"] ], values = [2.0, 3.0], queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ].
The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction.
思路:
最近被实数在计算机中的精确表示和精确计算搞得焦头烂额,看到这道题目,突然想到也许目前一些数据精确表示和精确计算的库函数就是利用本题的原理实现的,例如IEEE中的“A lazy exact arithmetic”。这确实是一种精妙的想法和实践,我自己在CGAL中已经体会到它的好处了。
言归正传,我们看看这道题目怎么做:形如a/b和b/c,让求a/c,我们可以抽象成图论中求各结点之间的距离,也就是说如果a和c之间有直线相连,则说明a/c是可计算的(当然由于图是带权无向图,所以自然而然c/a也是可计算的)。因为是多点到多点的方式,所以可以用Floyd算法来计算。这个算法只要三重循环即可,其中最外层是中间结点。Floyd算法的时间复杂度是O(n^3),这也是本算法的时间复杂度。构造queery的过程就相对比较简单了:直接查询两个结点之间是否有边相连。
代码:
class Solution {
public:
vector<double> calcEquation(vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries) {
unordered_map<string, unordered_map<string, double>> hash; // the representation of the graph
for(int i = 0; i < equations.size(); ++i) { // construct the graph
hash[equations[i].first][equations[i].second] = values[i];
hash[equations[i].second][equations[i].first] = 1.0 / values[i];
}
for(auto val : hash) {
hash[val.first][val.first] = 1.0;
}
for(auto val1 : hash) { // calcualte the shortest paths for the graph
for(auto val2 : hash) {
for(auto val3 : hash) {
if(hash[val2.first].count(val1.first) && hash[val1.first].count(val3.first))
hash[val2.first][val3.first] = hash[val2.first][val1.first] * hash[val1.first][val3.first];
}
}
}
vector<double> ans; // construct the results
for(auto val : queries) {
ans.push_back(hash[val.first].count(val.second) ? hash[val.first][val.second] : -1.0);
}
return ans;
}
};