题目:
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
思路:
我们经过分析就可以发现,一个数的1的个数和它的一半之间存在对应关系(可以想象一下位操作中的右移操作^_^),具体来讲:
1)如果n是偶数,那么它的二进制所含的1的个数和它的一半相同;
2)如果n是奇数,那么它的二进制所含的1的个数比它的一半对一个。
因此,一个十分简洁的状态转移方程出来了:dp[i] = dp[i / 2] + i % 2。代码的时间复杂度是O(n),空间复杂度是O(1)(我们这里没有计算返回值所占用的空间)。
代码:
class Solution {
public:
vector<int> countBits(int num) {
vector<int> dp(num + 1, 0);
for (int i = 1; i <= num; ++i) {
dp[i] = dp[i / 2] + i % 2;
}
return dp;
}
};
本文介绍了一种高效算法,用于计算从0到给定整数范围内每个数字二进制表示中1的个数。通过巧妙利用数字特性,实现了线性时间复杂度内的解决方案。

被折叠的 条评论
为什么被折叠?



