[Leetcode] 256. Paint House 解题报告

本文介绍了一种使用动态规划解决房屋涂色问题的方法,确保相邻房屋颜色不同且总成本最低。通过定义状态并建立转移方程,实现了高效的求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

There are a row of n houses, each house can be painted with one of the three colors: red, blue or green. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.

The cost of painting each house with a certain color is represented by a n x 3 cost matrix. For example, costs[0][0] is the cost of painting house 0 with color red; costs[1][2] is the cost of painting house 1 with color green, and so on... Find the minimum cost to paint all houses.

Note:
All costs are positive integers.

思路

算是一道简单的动态规划题目。我们定义red[i]表示将第i个房屋刷成红色时,前i个房屋的最小代价,则状态转移方程为red[i] = min(green[i - 1], blue[i - 1]) + costs[i][0]。green[i]和blue[i]的定义以及递推公式类似。最终返回red[size - 1], green[size - 1]和blue[size - 1]的最小值即可。

代码

class Solution {
public:
    int minCost(vector<vector<int>>& costs) {
        int size = costs.size();
        if (size == 0) {
            return 0;
        }
        vector<int> red(size, INT_MAX);
        vector<int> green(size, INT_MAX);
        vector<int> blue(size, INT_MAX);
        red[0] = costs[0][0];
        green[0] = costs[0][1];
        blue[0] = costs[0][2];
        for (int i = 1; i < size; ++i) {
            red[i] = min(blue[i - 1], green[i - 1]) + costs[i][0];
            green[i] = min(red[i - 1], blue[i - 1]) + costs[i][1];
            blue[i] = min(red[i - 1], green[i - 1]) + costs[i][2];
        }
        return min(red[size - 1], min(green[size - 1], blue[size - 1]));
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值