[Leetcode] 174. Dungeon Game 解题报告

本文介绍了一种利用动态规划算法解决骑士救公主问题的方法。通过从终点反向推导,计算骑士达到每个房间所需的最小初始生命值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. The dungeon consists of M x N rooms laid out in a 2D grid. Our valiant knight (K) was initially positioned in the top-left room and must fight his way through the dungeon to rescue the princess.

The knight has an initial health point represented by a positive integer. If at any point his health point drops to 0 or below, he dies immediately.

Some of the rooms are guarded by demons, so the knight loses health (negative integers) upon entering these rooms; other rooms are either empty (0's) or contain magic orbs that increase the knight's health (positive integers).

In order to reach the princess as quickly as possible, the knight decides to move only rightward or downward in each step.


Write a function to determine the knight's minimum initial health so that he is able to rescue the princess.

For example, given the dungeon below, the initial health of the knight must be at least 7 if he follows the optimal path RIGHT-> RIGHT -> DOWN -> DOWN.

-2 (K) -3 3
-5 -10 1
10 30 -5 (P)

Notes:

  • The knight's health has no upper bound.
  • Any room can contain threats or power-ups, even the first room the knight enters and the bottom-right room where the princess is imprisoned.

思路

一道典型的动态规划题目。不过和其它动规题目不同的是,我们从右下角往左上角倒推更加容易。一个位置的状态是由它下面的一个和右边的状态决定。因此一个基本的状态方程是:dp[i][j] = min(max(1, dp[i + 1][j] - dungeon[i][j]), max(1, dp[i][j + 1] - dungeon[i][j]))。

代码

1、O(n^2)空间复杂度的代码:

class Solution {
public:
    int calculateMinimumHP(vector<vector<int>>& dungeon) {
        if(dungeon.size() == 0 || dungeon[0].size() == 0) {
            return 0;
        }
        int row = dungeon.size(), col = dungeon[0].size();
        vector<vector<int>> dp(row, vector<int>(col, 1));
        dp[row - 1][col - 1] = max(1, 1 - dungeon[row - 1][col - 1]);
        for(int i = row - 1; i >= 0; --i) {
            for(int j = col - 1; j >= 0; --j) {
                if(i == row - 1 && j == col - 1) {    // The initical case
                    continue;
                }
                int min_from_row = INT_MAX;
                int min_from_col = INT_MAX;
                if(i < row - 1) {
                    min_from_col = max(1, dp[i + 1][j] - dungeon[i][j]);
                }
                if(j < col - 1) {
                    min_from_row = max(1, dp[i][j + 1] - dungeon[i][j]);
                }
                dp[i][j] = min(min_from_row, min_from_col);
            }
        }
        return dp[0][0];
    }
};

2、O(n)空间复杂度的代码:

class Solution {
public:
    int calculateMinimumHP(vector<vector<int>>& dungeon) {
        int m = dungeon.size(), n=dungeon[0].size();  
        vector<int> dp(n + 1, INT_MAX);  
        dp[n - 1] = 1;  
        for(int i = m - 1; i >= 0; --i) {
            for(int j = n - 1; j >= 0; --j) {
                dp[j] = max(min(dp[j], dp[j + 1]) - dungeon[i][j], 1);
            }
        }
        return dp[0];  
    }
};
内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值