poj 2536 Gopher II

解决地鼠在限定时间内尽可能多地逃入洞穴的问题,通过构建二分图并使用匈牙利算法进行匹配来找到最优解。

Description

The gopher family, having averted the canine threat, must face a new predator.

The are n gophers and m gopher holes, each at distinct (x, y) coordinates. A hawk arrives and if a gopher does not reach a hole in s seconds it is vulnerable to being eaten. A hole can save at most one gopher. All the gophers run at the same velocity v. The gopher family needs an escape strategy that minimizes the number of vulnerable gophers.

Input

The input contains several cases. The first line of each case contains four positive integers less than 100: n, m, s, and v. The next n lines give the coordinates of the gophers; the following m lines give the coordinates of the gopher holes. All distances are in metres; all times are in seconds; all velocities are in metres per second.

Output

Output consists of a single line for each case, giving the number of vulnerable gophers.

Sample Input

2 2 5 10
1.0 1.0
2.0 2.0
100.0 100.0
20.0 20.0

Sample Output

1

Key To Problem

题意:有许多的地鼠和许多的地鼠坑,每个地鼠坑只能装一只地鼠,给定每个地鼠和地鼠坑的坐标,求在一定时间内有几只地鼠回到地鼠坑。
题解:裸的二分图匹配,首先将每只地鼠与其在规定时间所能达到的地鼠坑连边,之后用匈牙利算法求解有多少只地鼠可以在规定时间内回到地鼠坑,用n减去即为所求。

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 210
using namespace std;
struct ss
{
    int next,to;
};
ss Edge[N*N];
struct node
{
    double x,y;
};
node st[N];
node en[N];
int n,m,tot,s,v;
int head[N];
int f[N];
bool used[N];

void clear()
{
    memset(head,0,sizeof(head));
    tot=0;
}

void add(int x,int y)
{
    Edge[++tot].next=head[x];
    Edge[tot].to=y;
    head[x]=tot;
}

bool cmp(double x1,double y1,double x2,double y2)
{
    double p=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
    if(p<=s*v)return true;
    else return false;
}

bool dfs(int u)
{
    for(int i=head[u];i;i=Edge[i].next)
    {
        int to=Edge[i].to;
        if(!used[to])
        {
            used[to]=true;
            if(f[to]==-1||dfs(f[to]))
            {
                f[to]=u;
                return true;
            }
        }
    }
    return false;
}

int hungary()
{
    int cnt=0;
    memset(f,-1,sizeof(f));
    for(int i=1;i<=n;i++)
    {
        memset(used,0,sizeof(used));
        if(dfs(i))cnt++;
    }
    return cnt;
}

int main()
{
    while(scanf("%d%d%d%d",&n,&m,&s,&v)!=EOF)
    {
        clear();
        for(int i=1;i<=n;i++)scanf("%lf%lf",&st[i].x,&st[i].y);
        for(int i=1;i<=m;i++)scanf("%lf%lf",&en[i].x,&en[i].y);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                if(cmp(st[i].x,st[i].y,en[j].x,en[j].y))add(i,j);
        printf("%d\n",n-hungary());
    }
    return 0;
}
基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值