关于java was start but returned exit code=13错误

本文详细介绍了在使用Eclipse时遇到的启动失败问题,原因在于32位JDK与64位Eclipse版本不匹配。通过检查JDK版本并运行特定代码来确认问题,最终成功下载并安装了64位JDK来解决问题。

起因

下载了JDK1.8,之后发现ECLPSE启动不起来了,报错

java was start but returned exit code=13

经查证,可能是因为64位和32位不匹配的问题

查看JDK版本

用java -version,未发现版本信息

java version "1.8.0_25"
Java(TM) SE Runtime Environment (build 1.8.0_25-b18)
Java HotSpot(TM) Client VM (build 25.25-b02, mixed mode, sharing)
只好打开记事本,写了段代码

public class A{
	public static void main(String[] args){
		
		String arch = System.getProperty("sun.arch.data.model");
		System.out.println(arch);
	}
}

运行

E:\>javac A.java
E:\>java A
错误: 找不到或无法加载主类 A

E:\>java -cp . A
32
可见JDK是32位的,而我的ECLIPSE是64的,所以不匹配,去下载最新的64位JDK

下载地址

eclipse :
http://www.eclipse.org/downloads/packages/release/Luna/R
jdk:
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

C:\Users\LN\.conda\envs\123\python.exe D:\File\Code\PyCharmCode\train\yolov5\yolov5-master\train.py github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5 train: weights=yolov5s.pt, cfg=, data=data\coco128.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data\hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False requirements: Ultralytics requirements ['pillow>=10.3.0', 'thop>=0.1.1'] not found, attempting AutoUpdate... Could not find a version that satisfies the requirement pillow>=10.3.0 (from versions: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7.0, 1.7.1, 1.7.2, 1.7.3, 1.7.4, 1.7.5, 1.7.6, 1.7.7, 1.7.8, 2.0.0, 2.1.0, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.7.0, 2.8.0, 2.8.1, 2.8.2, 2.9.0, 3.0.0, 3.1.0rc1, 3.1.0, 3.1.1, 3.1.2, 3.2.0, 3.3.0, 3.3.1, 3.3.2, 3.3.3, 3.4.0, 3.4.1, 3.4.2, 4.0.0, 4.1.0, 4.1.1, 4.2.0, 4.2.1, 4.3.0, 5.0.0, 5.1.0, 5.2.0, 5.3.0, 5.4.0, 5.4.1, 6.0.0, 6.1.0, 6.2.0, 6.2.1, 6.2.2, 7.0.0, 7.1.0, 7.1.1, 7.1.2, 7.2.0, 8.0.0, 8.0.1, 8.1.0, 8.1.1, 8.1.2, 8.2.0, 8.3.0, 8.3.1, 8.3.2, 8.4.0) No matching distribution found for pillow>=10.3.0 You are using pip version 18.1, however version 21.3.1 is available. You should consider upgrading via the 'python -m pip install --upgrade pip' command. WARNING Retry 1/2 failed: Command 'pip install --no-cache-dir "pillow>=10.3.0" "thop>=0.1.1" ' returned non-zero exit status 1. Could not find a version that satisfies the requirement pillow>=10.3.0 (from versions: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7.0, 1.7.1, 1.7.2, 1.7.3, 1.7.4, 1.7.5, 1.7.6, 1.7.7, 1.7.8, 2.0.0, 2.1.0, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.3.2, 2.4.0, 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0, 2.6.1, 2.6.2, 2.7.0, 2.8.0, 2.8.1, 2.8.2, 2.9.0, 3.0.0, 3.1.0rc1, 3.1.0, 3.1.1, 3.1.2, 3.2.0, 3.3.0, 3.3.1, 3.3.2, 3.3.3, 3.4.0, 3.4.1, 3.4.2, 4.0.0, 4.1.0, 4.1.1, 4.2.0, 4.2.1, 4.3.0, 5.0.0, 5.1.0, 5.2.0, 5.3.0, 5.4.0, 5.4.1, 6.0.0, 6.1.0, 6.2.0, 6.2.1, 6.2.2, 7.0.0, 7.1.0, 7.1.1, 7.1.2, 7.2.0, 8.0.0, 8.0.1, 8.1.0, 8.1.1, 8.1.2, 8.2.0, 8.3.0, 8.3.1, 8.3.2, 8.4.0) No matching distribution found for pillow>=10.3.0 You are using pip version 18.1, however version 21.3.1 is available. You should consider upgrading via the 'python -m pip install --upgrade pip' command. WARNING Retry 2/2 failed: Command 'pip install --no-cache-dir "pillow>=10.3.0" "thop>=0.1.1" ' returned non-zero exit status 1. WARNING requirements: Command 'pip install --no-cache-dir "pillow>=10.3.0" "thop>=0.1.1" ' returned non-zero exit status 1. YOLOv5 2025-6-5 Python-3.9.19 torch-2.3.1 CUDA:0 (NVIDIA GeForce GTX 1660 Ti, 6144MiB) hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 runs in Comet TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/ Dataset not found , missing paths ['D:\\File\\Code\\PyCharmCode\\train\\yolov5\\yolov5-master\\data\\cat_dog\\images\\images\\val'] Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip to coco128.zip... 100%|██████████| 6.66M/6.66M [00:03<00:00, 2.05MB/s] Dataset download success (5.7s), saved to D:\File\Code\PyCharmCode\train\yolov5\datasets Overriding model.yaml nc=80 with nc=2 from n params module arguments 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] 2 -1 1 18816 models.common.C3 [64, 64, 1] 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] 4 -1 2 115712 models.common.C3 [128, 128, 2] 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] 6 -1 3 625152 models.common.C3 [256, 256, 3] 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] 8 -1 1 1182720 models.common.C3 [512, 512, 1] 9 -1 1 656896 models.common.SPPF [512, 512, 5] 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 models.common.Concat [1] 13 -1 1 361984 models.common.C3 [512, 256, 1, False] 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 16 [-1, 4] 1 0 models.common.Concat [1] 17 -1 1 90880 models.common.C3 [256, 128, 1, False] 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] 19 [-1, 14] 1 0 models.common.Concat [1] 20 -1 1 296448 models.common.C3 [256, 256, 1, False] 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] 22 [-1, 10] 1 0 models.common.Concat [1] 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] 24 [17, 20, 23] 1 18879 models.yolo.Detect [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]] Model summary: 214 layers, 7025023 parameters, 7025023 gradients Transferred 343/349 items from yolov5s.pt AMP: checks passed optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias Traceback (most recent call last): File "D:\File\Code\PyCharmCode\train\yolov5\yolov5-master\utils\dataloaders.py", line 587, in __init__ raise FileNotFoundError(f"{prefix}{p} does not exist") FileNotFoundError: train: D:\File\Code\PyCharmCode\train\yolov5\yolov5-master\data\cat_dog\images\images\train does not exist The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\File\Code\PyCharmCode\train\yolov5\yolov5-master\train.py", line 986, in <module> main(opt) File "D:\File\Code\PyCharmCode\train\yolov5\yolov5-master\train.py", line 688, in main train(opt.hyp, opt, device, callbacks) File "D:\File\Code\PyCharmCode\train\yolov5\yolov5-master\train.py", line 285, in train train_loader, dataset = create_dataloader( File "D:\File\Code\PyCharmCode\train\yolov5\yolov5-master\utils\dataloaders.py", line 184, in create_dataloader dataset = LoadImagesAndLabels( File "D:\File\Code\PyCharmCode\train\yolov5\yolov5-master\utils\dataloaders.py", line 592, in __init__ raise Exception(f"{prefix}Error loading data from {path}: {e}\n{HELP_URL}") from e Exception: train: Error loading data from D:\File\Code\PyCharmCode\train\yolov5\yolov5-master\data\cat_dog\images\images\train: train: D:\File\Code\PyCharmCode\train\yolov5\yolov5-master\data\cat_dog\images\images\train does not exist See https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
06-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

day walker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值