Linux进程状态解析

 

Linux是一个多用户,多任务的系统,可以同时运行多个用户的多个程序,就必然会产生很多的进程,而每个进程会有不同的状态。

 

Linux进程状态解析之R、S、D

 

Linux进程状态:R (TASK_RUNNING),可执行状态。

只有在该状态的进程才可能在CPU上运行。而同一时刻可能有多个进程处于可执行状态,这些进程的task_struct结构(进程控制块)被放入对 应CPU的可执行队列中(一个进程最多只能出现在一个CPU的可执行队列中)。进程调度器的任务就是从各个CPU的可执行队列中分别选择一个进程在该 CPU上运行。

很多操作系统教科书将正在CPU上执行的进程定义为RUNNING状态、而将可执行但是尚未被调度执行的进程定义为READY状态,这两种状态在linux下统一为 TASK_RUNNING状态。

 

Linux进程状态:S (TASK_INTERRUPTIBLE),可中断的睡眠状态。

处于这个状态的进程因为等待某某事件的发生(比如等待socket连接、等待信号量),而被挂起。这些进程的task_struct结构被放入对应事件的等待队列中。当这些事件发生时(由外部中断触发、或由其他进程触发),对应的等待队列中的一个或多个进程将被唤醒。

通过ps命令我们会看到,一般情况下,进程列表中的绝大多数进程都处于TASK_INTERRUPTIBLE状态(除非机器的负载很高)。毕竟CPU就这么一两个,进程动辄几十上百个,如果不是绝大多数进程都在睡眠,CPU又怎么响应得过来。

 

Linux进程状态:D (TASK_UNINTERRUPTIBLE),不可中断的睡眠状态。

与TASK_INTERRUPTIBLE状态类似,进程处于睡眠状态,但是此刻进程是不可中断的。不可中断,指的并不是CPU不响应外部硬件的中断,而是指进程不响应异步信号。
绝 大多数情况下,进程处在睡眠状态时,总是应该能够响应异步信号的。否则你将惊奇的发现,kill -9竟然杀不死一个正在睡眠的进程了!于是我们也很好理解,为什么ps命令看到的进程几乎不会出现TASK_UNINTERRUPTIBLE状态,而总是 TASK_INTERRUPTIBLE状态。

而TASK_UNINTERRUPTIBLE状态存在的意义就在于,内核的某些处理流程是不能被打断的。如果响应异步信号,程序的执行流程中就会被 插入一段用于处理异步信号的流程(这个插入的流程可能只存在于内核态,也可能延伸到用户态),于是原有的流程就被中断了。

 

Linux进程状态解析之T、Z、X

Linux进程状态:T (TASK_STOPPED or TASK_TRACED),暂停状态或跟踪状态。

向进程发送一个SIGSTOP信号,它就会因响应该信号而进入TASK_STOPPED状态(除非该进程本身处于 TASK_UNINTERRUPTIBLE状态而不响应信号)。(SIGSTOP与SIGKILL信号一样,是非常强制的。不允许用户进程通过 signal系列的系统调用重新设置对应的信号处理函数。)
向进程发送一个SIGCONT信号,可以让其从TASK_STOPPED状态恢复到TASK_RUNNING状态。

 

Linux进程状态:Z (TASK_DEAD - EXIT_ZOMBIE),退出状态,进程成为僵尸进程。

进程在退出的过程中,处于TASK_DEAD状态。

在这个退出过程中,进程占有的所有资源将被回收,除了task_struct结构(以及少数资源)以外。于是进程就只剩下task_struct这么个空壳,故称为僵尸。

 

Linux进程状态:X (TASK_DEAD - EXIT_DEAD),退出状态,进程即将被销毁。
而进程在退出过程中也可能不会保留它的task_struct。

内容概要:该论文研究增程式电动汽车(REEV)的能量管理策略,针对现有优化策略实时性差的问题,提出基于工况识别的自适应等效燃油消耗最小策略(A-ECMS)。首先建立整车Simulink模型和基于规则的策略;然后研究动态规划(DP)算法和等效燃油最小策略;接着通过聚类分析将道路工况分为四类,并设计工况识别算法;最后开发基于工况识别的A-ECMS,通过高德地图预判工况类型并自适应调整SOC分配。仿真显示该策略比规则策略节油8%,比简单SOC规划策略节油2%,并通过硬件在环实验验证了实时可行性。 适合人群:具备一定编程基础,特别是对电动汽车能量管理策略有兴趣的研发人员和技术爱好者。 使用场景及目标:①理解增程式电动汽车能量管理策略的基本原理;②掌握动态规划算法和等效燃油消耗最小策略的应用;③学习工况识别算法的设计和实现;④了解基于工况识别的A-ECMS策略的具体实现及其优化效果。 其他说明:此资源不仅提供了详细的MATLAB/Simulink代码实现,还深入分析了各算法的原理和应用场景,适合用于学术研究和工业实践。在学习过程中,建议结合代码调试和实际数据进行实践,以便更好地理解策略的优化效果。此外,论文还探讨了未来的研究方向,如深度学习替代聚类、多目标优化以及V2X集成等,为后续研究提供了思路。
内容概要:论文《基于KANN-DBSCAN带宽优化的核密度估计载荷谱外推》针对传统核密度估计(KDE)载荷外推中使用全局固定带宽的局限性,提出了一种基于改进的K平均最近邻DBSCAN(KANN-DBSCAN)聚类算法优化带宽选择的核密度估计方法。该方法通过对载荷数据进行KANN-DBSCAN聚类分组,采用拇指法(ROT)计算各簇最优带宽,再进行核密度估计和蒙特卡洛模拟外推。实验以电动汽车实测载荷数据为对象,通过统计参数、拟合度和伪损伤三个指标验证了该方法的有效性,误差显著降低,拟合度R²>0.99,伪损伤接近1。 适合人群:具备一定编程基础和载荷数据分析经验的研究人员、工程师,尤其是从事汽车工程、机械工程等领域的工作1-5年研发人员。 使用场景及目标:①用于电动汽车载荷谱编制,提高载荷预测的准确性;②应用于机械零部件的载荷外推,特别是非对称载荷分布和多峰扭矩载荷;③实现智能网联汽车载荷预测与数字孪生集成,提供动态更新的载荷预测系统。 其他说明:该方法不仅解决了传统KDE方法在复杂工况下的“过平滑”与“欠拟合”问题,还通过自适应参数机制提高了方法的普适性和计算效率。实际应用中,建议结合MATLAB代码实现,确保数据质量,优化参数并通过伪损伤误差等指标进行验证。此外,该方法可扩展至风电装备、航空结构健康监测等多个领域,未来研究方向包括高维载荷扩展、实时外推和多物理场耦合等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值