毕设开源 基于hadoop大数据教育可视化系统(源码+论文)

# 0 简介

今天学长向大家介绍一个机器视觉的毕设项目

毕设分享 基于hadoop大数据教育可视化系统(源码+论文)

项目获取:

https://gitee.com/assistant-a/project-sharing

基于hadoop和echarts的教育大数据可视化系统

一、摘 要

​ 在线教育平台现在是教育体系的重要组成部分,在当前大数据时代的背景下,促进教育机构建立统一平台、统一资源管理的数字化教学系统。如何评估系统平台的健康程度、学生的学习体验和在线课程的质量对于课程的教师和学校的管理人员都是非常重要的,这是进行数据分析的主要目的。可视化是一个重要的途径,它能够帮助大数据获得完整的数据图表并挖掘数据的价值,大数据分析离不开可视化这一工具的推动。

​ 基于hadoop和echarts的教育大数据可视化系统,以B/S模式开发。通过Hadoop中Sqoop进行数据导入转换。以MapReduce构建数据分析,数据分析维度包括每日登录人数分析、平均学习时长分析、学习行为次数分析、每日活跃情况分析和分时段学习人数分析。最终使用ECharts可视化工具来对在线教育平台在学习过程中产生的数据进行可视化大屏展现,让更多人感受到可视化大数据的魅力。

二、相关理论和技术介绍

2.1 大数据可视化研究

大数据可视化是关于数据视觉表现形式的科学技术研究[9],将数据转换为图形或图像在屏幕上显示出来,并进行各种交互处理的理论、方法和技术。将数据直观地展现出来,以帮助人们理解数据,同时找出包含在海量数据中的规律或者信息,更多的为态势监控和综合决策服务。数据可视化是大数据生态链的最后一公里,也是用户最直接感知数据的环节。

数据可视化系统并不是为了展示用户的已知的数据之间的规律,而是为了帮助用户通过认知数据,有新的发现,发现这些数据所反映的实质。

大数据可视化的实施是一系列数据的转换过程。通过对原始数据进行标准化、结构化的处理,把它们整理成数据表。将这些数值转换成视觉结构,通过视觉的方式把它表现出来。例如将高中低的风险转换成红黄蓝等色彩,数值转换成大小。将视觉结构进行组合,把它转换成图形传递给用户,用户通过人机交互的方式进行反向转换,去更好地了解数据背后有什么问题和规律。

传统的显示技术已很难达到可以完美展示出大规模、高纬度、非结构化数据层出不穷数据的需求,随着人们对大数据技术的不断应用和机器学习的不断深入,数据可视化越来越受到人们的欢迎和认可[9]。那么,应运而生的有哪些新的展示方式呢?首先,不得不提到的一定的是大屏了。高清大屏幕具有超大画面、纯真彩色、高亮度、高分辨率等显示优势, 结合数据实时渲染技术、GIS空间数据可视化技术,实现数据实时图形可视化、场景化以及实时交互,让使用者更加方便地进行数据的理解和空间知识的呈现[10],可应用于指挥监控、视景仿真及三维交互等众多领域.另外VR、AR、MR[11]、全息投影…这些当下最火热的技术也已经被应用到游戏、房地产、教育等各行各业,可以预见的是数据可视化也能与这些技术擦出有趣的火花,比如带来更真实的感官体验和更接近现实的交互方式,使用户可以完全“沉浸”到数据之中。而在不远的未来,触觉、嗅觉甚至味觉,都可能成为我们接受数据和信息的感知方式[12]。

2.2 Java语言

Java语言是一种半动态的支持多平台的面向对象高级语言,其有着悠久的历史却还在换发生机。Java语法严谨,面向对象的思想更是划时代的标志,简单易用,高并发稳定,适合大型系统的开发[13]。

2.3 Idea开发环境

IDEA是一款Java的IDE,它集成了J2EE开发的常用插件,能够快速提高团队的合作和开发效率,该软件实成自动编译,检查错误,尤其在代码智能助手、自动代码提示等方面功能强大。

2.4 Hadoop生态圈技术

HDFS

一种分布式文件系统,提供对应用程序数据的高吞吐量访问,HDFS以流式数据访问模式来存储超大文件,运行于商用硬件集群上[14]。

MapReduce

基于YARN的系统,是一种可用于数据处理的编程模型,用于并行处理大型数据集,MapReduce任务过程分为两个处理阶段:Map阶段和Reduce阶段。每个阶段都是以键值对作为输入和输出,其类型是由程序员来选择[14]。

HBase

HBase是一个在HDFS上开发的面向列的分数式数据库,该技术是Google论文“Bigtable:一个结构化数据的分布式存储系统”的开源实现,它自底向上地进行构建,能够简单地通过增加节点来达到线性扩展[14],解决了RDBMS的可伸缩性问题。

Sqoop

Sqoop允许用户将数据从结构化存储器抽取到Hadoop中[14],用以关系型数据和Hadoop之间数据迁移,抽取的数据数据可以被MapReduce程序使用[14]。

2.5 Echarts

ECharts是由百度开发的交互式可视化图表控件,兼容主流浏览器,并提供丰富的中文API接口和文档,提供直观、交互、个性化的数据图表[15],该技术也是免费,其高可用性和易用性也是深受国人喜爱。

2.6 开发环境

  • 硬件环境

  • -7300CPU 16g内存 1T硬盘

  • 软件环境

  • IntelliJ IDEA 2018.1.5 x64、Eclipse4.5.2开发工具

  • Windows7/Windows10 64位系统

  • Google Chrome 73.0.3683.103浏览器

VMware Workstation 14 Pro 14.1.2 build-8497320

Hadoop 2.7.3、HBase 1.3.1

三、系统调研

【资源说明】 基于Hadoop实现大数据可视化分析的Web系统源码+项目说明+sql数据库.zip 1.本项目利用Hadoop处理高校无线定位大数据,有效地将位置信息应用于学生时空行为模式挖掘,建立基于精准位置信息的行为数据挖掘计算模型。 2.基于Hadoop计算平台,并实现对大数据进行可视化分析的Web系统,采用ssm+mysql技术。 3.利用一些合适的算法实现校园热点区域提取、学生异常轨迹探测、人流迁徙分析及学生时空行为相似性分析推测等功能。  4.基于学校地图API和echarts插件可视化展现。 校园热点区域提取 采用基本的K-means算法,然后在校园地图上使用热力图形式呈现 学生异常轨迹探测 采用地理接口,筛选出不在建筑物范围内的定点。 人流迁徙分析 从wifi定点数据中根据用户特性、时间特性、建筑特性,归纳出有效完整轨迹,之后采用分段轨迹聚类算法,分析校内人员轨迹迁徙状况。 在地图上使用echarts插件里的迁徙图在校园地图上动态呈现校园人群迁徙分布。 学生时空行为相似性分析推测等功能 采用基本的Word2Vec的Skip-Gram模型用于计算人员的基于时空行为的相似人群,根据人员的脱敏信息,进行分析与预测。 使用该算法的主要工作就是基于WiFi定位数据构建自己的“语料库”。 为什么可以采用Word2Vec的Skip-Gram模型的原因: 解决用户时空行为相似问题 一种行为的所有用户(学号) -> 分词处理后一段语言文字 每个用户(学号)-> 每个关键词 用户之间的亲密程度 -> 关键词相近概率 可视化web端项目 特点: 1.实现了在自己指定的地图范围上使用echerts插件,实现热力图,迁徙图。 2.基于wifi定位数据,使用了K-means算法、Word2Vec算法、轨迹分段聚类算法。 3.基于真实数据的课题实践。 4.Hadoop分布式计算的应用。 【备注】 1.项目代码均经过功能验证ok,确保稳定可靠运行。欢迎下载使用体验! 2.主要针对各个计算机相关专业,包括计算机科学、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师、企业员工。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。在使用过程中,如有问题或建议,请及时沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A毕设分享家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值