什么是图神经网络?GNN/GCN快速入门教程

前言:

图形神经网络(GNN)作为一种机器学习算法,可以从图中提取重要信息并进行有用的预测。随着图形变得越来越普遍、信息更丰富,人工神经网络变得越来越流行和强大,图形神经网络(GNN)已经成为许多重要应用的强大工具

1 图神经网络的介绍

很多书把图神经网络和卷积神经网络(CNN),循环神经网络(RNN)并列。相对于CNN和RNN而言,GNN的发展比较短但是在很多领域都有很好的应用。因为图数据有复杂的结构,多样化的属性类型,可以模拟多种任务场景,比如社交网络,调控网络,生物分子结构等。

 

社交网络

基因网络

蛋白质功能网络

1.1 Graph上的任务:

节点分类:预测特定节点的类别

链接预测:预测两个节点是否有联系

社区检测:识别密集联系的节点群落

网络相似性:两个网络的相似性

1.2 图神经网络与其他神经网络的区别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值