题目链接
题目描述
给你一个整数 n n n ,请你找出并返回第 n n n 个 丑数 。
丑数 就是质因子只包含 2 2 2、 3 3 3 和 5 5 5 的正整数。
示例1:
输入:n = 10
输出:12
解释:[1, 2, 3, 4, 5, 6, 8, 9, 10, 12] 是由前 10 个丑数组成的序列。
示例2:
输入:n = 1
输出:1
解释:1 通常被视为丑数。
提示:
- 1 ≤ n ≤ 1690 1 \leq n \leq 1690 1≤n≤1690
解法:动态规划
设 f ( n ) f(n) f(n) 代表第 n n n 个丑数。
因为每个丑数都只包含 2 , 3 , 5 2, 3, 5 2,3,5 的质因子(除开 1 1 1),那么 f ( n ) f(n) f(n) 也就是第 n n n 个丑数,必然是由 [ 1 , n − 1 ] [1, n - 1] [1,n−1] 之间的某一个丑数,假设是 f ( i ) × 2 , f ( i ) × 3 , f ( i ) × 5 f(i) \times 2,f(i) \times 3, f(i) \times 5 f(i)×2,f(i)×3,f(i)×5,三个其中的一个而来。
很显然, f ( n ) f(n) f(n) 的值一定是 f ( i ) × 2 , f ( i ) × 3 , f ( i ) × 5 f(i) \times 2,f(i) \times 3, f(i) \times 5 f(i)×2,f(i)×3,f(i)×5 三者之中的最小值。
举例说明:
f(1) = 1
f(2) = f(1) * 2 = 2
f(3) = f(1) * 3 = 3
f(4) = f(2) * 2 = 4
f(5) = f(1) * 5 = 5
f(6) = f(3) * 2 = 6
f(7) = f(4) * 2 = 8
f(8)