搜索二叉树以速率为O(lngN)也就是和二分查找相同的速率,实际原理也是相同。
先看代码:
#pragma once
#include<iostream>
#include<set>
#include<map>
using namespace std;
//AVLTree
template<class K,class V>
struct AVTreeNode
{
AVTreeNode<K, V>* _left;
AVTreeNode<K, V>* _right;
AVTreeNode<K, V>* _parent;
int _bf;//balance factor平衡因子
pair<K, V> _kv;
AtreeNode(const pair<K, V>& kv)
:_left(nullptr),
_right(nullptr),
_parent(nullptr),
_kv(kv),
_bf(0)
{}
};
template<class K,class V>
class AVLTree
{
typedef AVTreeNode<K, V> Node;
public:
bool Insert(const pair<K, V>& kv)
{
//1、先按搜索树的规则进行插入
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
parent = cur;
if (cur->_kv.first > kv.first)
{
cur = cur->_left;
}
else if (cur->_kv.first < kv.first)
{
cur=cur->_right;
}
esle
{
return false;
}
cur = new Node(kv);
if (parent->_kv.first < kv->first)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
//2、跟新平衡因子
while (parent)//一直跟新到parent为nullptr为止
{
if (cur == parent->_right)//新增节点在右,平衡因子++
{
++parent->_bf;
}
else//新增节点在左,平衡因子--
{
--parent->_bf;
}
if (parent->_bf == 0)//这里表示新增节点让二叉树平衡了
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = parent->_parent;//向上迭代(向parent迭代)
}
else if (parent->_bf == 2 || parent->_bf == -2)//出现了不平衡,需要旋转修改不平衡
{
//parent所在的子树出现不平衡了,需要旋转处理一下
if (parent->_bf == 2)//右子树过长
{
if (cur->_bf == 1)//新增节点在右,也就是右斜线路径只需要左单旋
RotateL(parent);
else if (cur->_bf == -1)//新增节点在左,形成了折线路径,需要右单旋加上左单旋(右左旋)
{
RotateRL(parent);
}
}
else if (parent->_bf == -2)//左子树过长
{
if (cur->_bf == -1)//左斜线
RotateR(parent);//右单旋
else if (cur->_bf == 1)
{
RotateLR(parent);//左右旋
}
}
}
}
return true;
}
}
//单左
void RotateL(Node* parent)//单左旋,也就是右斜线需要的(形状为\)
{
Node* subR = parent->_right;//右斜线,直接取parent->_right即可
Node* subRL = subR->_left;//parent会接收subRL,然后用parent来接替subRL,而subR会成为新的parent
parent->_right = subRL;//subR大于parent,因此subRL依然大于parent;
if (subRL)//判断是否为nullptr
{
subRL->_parent = parent;
}
subR->_left = parent;//subR的左指针指向parent
Node* ppNode = parent->_parent;//记录parent->_parent,用于旋转后给subR继承parent->_parent
parent->_parent = subR;//改变parent后,也需要改变_parent
//1、原来parent是这棵树的根,现在subR是根
//2、parent为根的树只是整棵树中的子树,改变了链接关系,那么subR就替换了位置
if (_root == parent)//当parent为根时,根时没有_parent,也就设立为nullptr
{
_root = subR;
subR->_parent = nullptr;
}
else//parent!=_root
{
if (ppNode->_left == parent)//判断parent是在parent->_parent->_left or parent->_parent->_right
ppNode->_left = subR;
else
ppNode->_right = subR;
subR->_parent = ppNode;
}
parent->_bf = subR->_bf = 0;//旋转后,该子树已经平衡
}
//单右
void RotateR(Node* parent)//左斜线(形状为/)
{
Node* subL = parent->_left;//该节点旋转后会成为parent
Node* subLR = subL->_right;//parent需要链接在左指针的节点
parent->_left = subLR;//subL小于parent,因此subLR依然小于parent
if (subLR)//判断subLR是否为nullptr
subLR->_parent = parent;
subL->_right = parent;//旋转,让parent链接到subL->_right
Node* ppNode = parent->__parent;//记录parent->_parent,方便后期subL的改变
parent->_parent = subL;
if (_root == parent)
{
_root = subL;
subL->_parent = nullptr;
}
else//parent不为根
{
if (ppNode->_left == parent)//判断parent在parent->_parent的左还是右
ppNode->_left = subL;//链接改变后的subL(新parent)
else
ppNode->_right = subL;
}
parent->_bf = subL->_bf = 0;//平衡后改变平衡因子
}
void RotateRL(Node* parent)//右左旋转(形状为>)
{
Node* subR = parent->_right;//看形状知道中间节点为parent->right
Node* subRL = subR->_left;//双旋转后subRL会被更改为新的parent
int bf = subRL->_bf;//记录增加节点在subRL的左还是右
RotateR(parent->_right);
RotateL(parent);
if (bf == -1)//增加的节点在左
{
parent->_bf = 0;//旋转后,新增节点会出现在parent->_right,让parent左右子树平衡
subR->_bf = 1;//旋转后subR接收了subRL->_right==h-1和本身的subR->_right==h,导致了右节点高
subRL->_bf = 0;//subRL已经成为新的parent,旋转后subRL一定为0(一定平衡)
}
else if (bf == 1)//增加的节点在右
{
subRL->_bf = 0;//新parent
subR->_bf = 0;//subR->_left==增加的节点(h-1)+1,subR->_right大小为h
parent->_bf = -1;//parent->_left大小为h,parent->_right大小为h-1
}
else//只有三个节点,且叶子节点都为nullptr
{
subR->_bf = subRL->_bf = parent->_bf = 0;
}
}
void RotateLR(Node* parent)//左右旋(形状很像<)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == -1)
{
parent->_bf = 1;
subL->_bf = 0;
subLR->_bf = 0;
}
else if (bf == 1)
{
subL->_bf = -1;
parent->_bf = subLR->_bf = 0;
}
else
{
subL->_bf = subLR->_bf = parent->_bf = 0;
}
}
int Height(Node* root)
{
if (root->nullptr)
return 0;
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool IsBalance(Node* root)
{
if (root == nullptr)
return true;
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
return abs(leftHeight - rightHeight < 2) && IsBalance(root->_left)&&IsBalance(root->_right);
}
private:
Node* _root = nullptr;
};
右单旋
左单旋
左右旋
右左旋