本次,我尝试了集成学习以及深度学习的方法,进行上分。
继上次我尝试的所有特征工程方案中,效果最好的依旧是采取历史平移+差分特征+窗口统计的办法:
# 合并训练数据和测试数据
data = pd.concat([train, test], axis=0).reset_index(drop=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)
# 历史平移
for i in range(10,36):
data[f'target_shift{i}'] = data.groupby('id')['target'].shift(i)
# 历史平移 + 差分特征
for i in range(1,4):
data[f'target_shift10_diff{i}'] = data.groupby('id')['target_shift10'].diff(i)
# 窗口统计
for win in [15,30,50,70]:
data[f'target_win{win}_mean'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').mean().values
data[f'target_win{win}_max'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').max().values
data[f'target_win{win}_min'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').min().values
data[f'target_win{win}_std'] = data.groupby('id')['target'].rolling(window=win, min_periods=3, closed='left').std().values
# 历史平移 + 窗口统计
for win in [7,14,28,35,50,70]:
data[f'target_shift10_win{win}_mean'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').mean().values
data[f'target_shift10_win{win}_max'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').max().values
data[f'target_shift10_win{win}_min'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').min().values
data[f'target_shift10_win{win}_sum'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').sum().values
data[f'target_shift710win{win}_std'] = data.groupby('id')['target_shift10'].rolling(window=win, min_periods=3, closed='left').std().values
随后,我们可以尝试融合多个模型的方法,“三个臭皮匠,顶个诸葛亮”,在集成中收获好的结果不失为一种策略。我们将LightGBM、XGBoost、CatBoost三个模型进行平均融合:
de