- 博客(268)
- 收藏
- 关注
原创 案例分析:Redis 如何助力秒杀业务5
秒杀,是对正常业务流程的考验。因为它会产生突发流量,平常一天的请求,可能就集中在几秒内就要完成。比如,京东的某些抢购,可能库存就几百个,但是瞬时进入的流量可能是几十上百万。如果参与秒杀的人,等待很长时间,体验就非常差,想象一下拥堵的高速公路收费站,就能理解秒杀者的心情。同时,被秒杀的资源会成为热点,发生并发争抢的后果。比如 12306 的抢票,如果单纯使用数据库来接受这些请求,就会产生严重的锁冲突,这也是秒杀业务难的地方。
2025-01-18 23:56:49
2912
4
原创 案例分析:如何用设计模式优化性能11
就是对常用开发技巧进行的总结,它使得程序员之间交流问题,有了更专业、便捷的方式。比如,我们在《02 | 理论分析:性能优化有章可循,谈谈常用的切入点》中提到,I/O 模块使用的是装饰器模式,你就能很容易想到 I/O 模块的代码组织方式。事实上,大多数设计模式并不能增加程序的性能,它只是代码的一种组织方式。本课时,我们将一一举例讲解和性能相关的几个设计模式,包括代理模式、单例模式、享元模式、原型模式等。
2025-01-18 23:56:41
1548
2
原创 超越常规:斐波那契数列的极速计算技术6
这是因为快速幂算法的时间复杂度为O(log n),在算法中只需进行log n次乘法运算。也就是说,数列的第三个数是前两个数的和,第四个数是第二个数和第三个数的和,以此类推。因此,空间复杂度为O(1),即常数级别的空间复杂度。基本思想是利用矩阵乘法的性质,将斐波那契数列的递推关系表示为矩阵形式,然后通过快速幂算法来快速计算矩阵的高次幂,从而得到斐波那契数列的第n项的值。矩阵解法结合快速幂的斐波那契数列算法具有优秀的时间复杂度O(log n)和空间复杂度O(1),适用于需要高效计算大数值斐波那契数列的场景。
2025-01-18 23:56:32
1480
2
原创 大前端:突破动态化容器的天花板3
最终我们获得了一个如上图的高性能、安全的动态化容器,可以以Wasm的方式支持原生级别的性能,也可以将JavaScript 的前端工程的性能提升一截。从某个角度看,像是我们把RN用Rust重写了,添加了Wasm解释器的支持。但用熟悉WebView架构的视角看,也可以看作是一个WebEngine Lite,只是试图绘制暂时用的系统UI。文章最后做一下回望和展望。回望:我们所做的所有架构和优化工作都可以概括为,区分本质复杂度和偶然复杂度,恰当的回应本质复杂度,降低偶然复杂度。动态化容器的本质复杂度是什么?
2025-01-18 23:56:19
921
原创 搜索广告召回技术在美团的实践1
从美团流量场景角度来看,美团搜索广告分为两大类,一是列表推荐广告;二是搜索广告。推荐广告以展现商家模式为主,通常叫商家流。搜索广告的展现形式比较丰富,有商家模式,即以商家展现为主,会挂上菜品/商品;还有商品模式,即以商品展现为主,以呈现商品大图、商品标题等核心商品信息为主。搜商品意图占据绝大多数份额,搜索商家只占较小的一部分;因此检索以商品为主,看候选规模的话,美团有百万量级的商家和十亿级别的商品,供给规模较庞大。
2025-01-18 23:56:09
631
3
原创 解锁 Feign 技术:优化微服务通信的实战秘籍
Feign 是一个声明式的 Web Service 客户端。它的出现使开发 Web Service 客户端变得很简单。使用 Feign 只需要创建一个接口加上对应的注解,比如:@FeignClient 注解。Feign 有可插拔的注解,包括 Feign 注解和 AX-RS 注解。Feign 也支持编码器和解码器,Spring Cloud Open Feign 对 Feign 进行增强支持 Spring Mvc 注解,可以像 Spring Web 一样使用 HttpMessageConverters 等。
2025-01-18 23:53:19
821
1
原创 Spring Guava数据流转换与处理13
Guava提供了许多工具和类,能够简化这一过程,尤其是在处理数据时,它的链式调用风格使得数据流的处理更加清晰、优雅。数据流的处理在现代开发中无处不在,而 Guava 提供的流式操作和工具类,让数据处理变得更加简洁、优雅。,都非常适合进行流式操作,通过链式调用我们可以实现一系列数据转换和处理,而不需要中间产生额外的临时变量。提供了许多常用的流式操作方法,可以用来处理集合或迭代器中的数据,增强代码的可读性与可维护性。这样,我们就能够轻松处理包含多余空格或多种分隔符的字符串,避免了手动处理这些繁琐的细节。
2025-01-18 23:53:10
525
1
原创 实战展示 ThreadLocal 如何为多线程编程提供一种简洁而高效的上下文管理方案
实现一个高效的上下文管理组件,以解决多线程环境下的数据共享和上下文管理这些问题。通过具体的代码示例和实战展示。如何为多线程编程提供一种简洁而高效的上下文管理方案。
2025-01-18 23:53:00
1128
6
原创 基于多模态信息抽取的菜品知识图谱构建1
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:46:26
567
2
原创 基于多模态信息抽取的菜品知识图谱构建2
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:46:16
717
原创 基于多模态信息抽取的菜品知识图谱构建3
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:46:11
752
3
原创 基于多模态信息抽取的菜品知识图谱构建4
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:46:05
906
5
原创 基于多模态信息抽取的菜品知识图谱构建5
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:56
573
2
原创 基于多模态信息抽取的菜品知识图谱构建6
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:52
881
4
原创 基于多模态信息抽取的菜品知识图谱构建7
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:46
754
原创 基于多模态信息抽取的菜品知识图谱构建8
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:42
725
4
原创 基于多模态信息抽取的菜品知识图谱构建9
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:37
841
1
原创 基于多模态信息抽取的菜品知识图谱构建10
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:32
936
2
原创 基于多模态信息抽取的菜品知识图谱构建11
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:26
903
3
原创 基于多模态信息抽取的菜品知识图谱构建12
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:22
1025
2
原创 基于多模态信息抽取的菜品知识图谱构建13
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:17
925
2
原创 基于多模态信息抽取的菜品知识图谱构建14
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:12
700
3
原创 基于多模态信息抽取的菜品知识图谱构建15
1. 背景中国有句古话:“民以食为天”。对食物的分析和理解,特别是识别菜肴的食材,在健康管理、卡路里计算、烹饪艺术、食物搜索等领域具有重要意义。但是,算法技术尽管在目标检测[1]-[3]、通用场景理解[4][5]和跨模态检索[6]-[8]方面取得了很大进展,却没有在食物相关的场景中取得好的表现,尤其是对烹饪菜肴的相关场景。其核心原因是缺乏细粒度食材的基准,这已经成为该领域发展的瓶颈。以往的研究主要集中在食物层面的表征学习,如Food2K上的食物识别[9]-[12],UNIMIB2016上的食物检测
2024-12-18 08:45:06
1008
1
原创 领域驱动设计DDD在B端营销系统的实践1
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:34:39
897
原创 领域驱动设计DDD在B端营销系统的实践2
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:34:30
636
3
原创 领域驱动设计DDD在B端营销系统的实践3
1 背景通过营销活动实现客户/用户拉新、留存和促活是业界普遍采用的方法。为实现商户增长和留存,美团核心本地商业/商业增值技术部也构建了相应的营销系统来支撑商户的线上营销运营。在系统建设过程中,面临着业务体量大、行业跨度大、场景多样、客户结构复杂,需求多变等挑战。本文试图还原从0到1构建面向商户的营销系统过程中,并通过DDD(领域驱动设计)来应对系统设计和建设中遇到的业务复杂度高、需求多变、维护成本大等问题。2 基本概念软件系统的复杂性主要体现在三个方面。隐晦:一是抽象层面的隐晦,抽象系统时,
2024-12-17 08:34:21
651
1
原创 领域驱动设计DDD在B端营销系统的实践4
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:34:12
851
1
原创 领域驱动设计DDD在B端营销系统的实践5
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:34:04
982
原创 领域驱动设计DDD在B端营销系统的实践6
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:33:55
911
1
原创 领域驱动设计DDD在B端营销系统的实践7
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:33:47
608
3
原创 领域驱动设计DDD在B端营销系统的实践8
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:33:38
815
3
原创 领域驱动设计DDD在B端营销系统的实践9
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:33:30
712
4
原创 领域驱动设计DDD在B端营销系统的实践10
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:33:22
818
3
原创 领域驱动设计DDD在B端营销系统的实践11
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:33:13
624
2
原创 领域驱动设计DDD在B端营销系统的实践12
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:33:05
799
2
原创 领域驱动设计DDD在B端营销系统的实践13
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:32:57
969
3
原创 领域驱动设计DDD在B端营销系统的实践14
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:32:47
792
1
原创 领域驱动设计DDD在B端营销系统的实践15
我们做的大部分系统都不是全新系统,如CRM、HR或SCM等,已经有很多业界实践,可充分借鉴这些实践,没必要自己创造新概念。要重视统一语言。没有统一语言就不会有概念模型,没有概念模型就不可能有靠谱的代码模型,拿到需求后就开始设计代码模型是不靠谱的。领域驱动设计是团队工作。现实中没有一个是严格意义上的领域专家,所有参与到这项工作的人都可以是领域专家,整个工作可以由技术团队主导,但一定要落地到产品和业务。拥抱变化,持续迭代。
2024-12-17 08:32:37
796
3
原创 Spark向量化计算在美团生产环境的实践1
i < num;++i) {计算在CPU内完成,逻辑计算单元操作寄存器中的数据,算术运算的源操作数要先放置到CPU的寄存器中,哪怕简单的内存拷贝也需要过CPU寄存器。加载(Load),从内存加载2个源操作数(a[i]和b[i])到2个寄存器。计算(Compute),执行加法指令,作用于2个寄存器里的源操作数副本,结果产生到目标寄存器。存储(Store),将目标寄存器的数据存入(拷贝)到目标内存位置(c[i])。
2024-12-16 18:06:48
738
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人