📚 研究背景与挑战
机械设备的故障诊断对于保障生产效率和安全至关重要。传统的智能诊断方法依赖于大量的训练数据,但在实际工业场景中,数据收集受到经济和时间因素的限制。更棘手的是,由于行业竞争和隐私安全问题,不同用户的数据之间存在壁垒,难以直接共享和聚合。这就限制了智能诊断方法在实际工业中的应用。🔒
为了解决这些问题,研究者们提出了一种结合联邦学习和迁移学习的方法,旨在保护数据隐私的同时,实现高效的故障诊断。联邦学习技术允许用户在本地进行模型训练,而不需要上传原始数据,从而保护了数据隐私。🌐
🧩 联邦多源领域对抗自适应框架
1. 联邦特征对齐
联邦特征对齐是该框架的核心思想之一。通过最小化不同客户端数据和目标域数据之间的特征分布差异,可以减少特征对齐过程中的负迁移现象。具体来说,研究者们设计了一个全局特征判别器模块,利用对抗学习来确保源域特征和目标域特征在边缘概率分布上的相似性。🔍
class GlobalFeatureDiscriminator(nn.Module):
def __init__(self):
super(GlobalFeatureDiscriminator, self).__init__()
self