正则化 LP、L1、L2范数

正则化的本质很简单,就是对某一问题加以先验的限制或约束以达到某种特定目的的一种手段或操作。在算法中使用正则化的目的是防止模型出现过拟合。

1、LP范数

范数简单可以理解为用来表征向量空间中的距离,而距离的定义很抽象,只要满足非负、自反、三角不等式就可以称之为距离。

LP范数不是一个范数,而是一组范数,其定义如下:

图片

p的范围是

图片

。p在(0,1)范围内定义的并不是范数,因为违反了三角不等式。

根据p的变化,范数也有着不同的变化,借用一个经典的有关P范数的变化图如下:

图片

上图表示了p从0到正无穷变化时,单位球(unit ball)的变化情况。在P范数下定义的单位球都是凸集,但是当0<p<1时,该定义下的单位球不是凸集(这个我们之前提过,当0<p<1时并不是范数)。

那问题来了,L0范数是啥玩意?

L0范数表示向量中非零元素的个数,用公式表示如下:

图片

我们可以通过最小化L0范数,来寻找最少最优的稀疏特征项。但不幸的是,L0范数的最优化问题是一个NP hard问题(L0范数同样是非凸的&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值