MATLAB(15)分类模型

一、前言

       在MATLAB中,实现不同类型的聚类(如K-means聚类、层次聚类、模糊聚类)和分类(如神经网络分类)需要用到不同的函数和工具箱。下面我将为每种方法提供一个基本的示例代码。

二、实现

1. K-means聚类

% 假设X是数据矩阵,每行是一个样本,每列是一个特征  
X = [randn(100,2)*0.75+ones(100,2);  
     randn(100,2)*0.5-ones(100,2)];  
  
% 指定聚类中心的数量  
k = 2;  
  
% 执行K-means聚类  
[idx, C] = kmeans(X, k);  
  
% 绘制结果  
figure;  
gscatter(X(:,1), X(:,2), idx, 'rb', 'xo');  
hold on;  
plot(C(:,1), C(:,2), 'kx', 'MarkerSize', 15, 'LineWidth', 3);  
title('K-means Clustering Results');  
legend('Cluster 1', 'Cluster 2', 'Centroids', 'Location', 'best');

2. 层次聚类(使用linkagedendrogram

% 使用相同的X数据  
Z = linkage(X, 'ward'); % 使用Ward方法  
  
% 绘制树状图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT 青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值