目录
39.组合总和
本题是 集合里元素可以用无数次,那么和组合问题的差别 其实仅在于 startIndex上的控制
思路
这道题元素可以无限次使用,所以一直递归,终止条件就是和已经超过目标就return。
代码
class Solution:
def backtracking(self, candidates, target, total, startIndex, path, result):
if total > target:
return
if total == target:
result.append(path[:])
return
for i in range(startIndex, len(candidates)):
total += candidates[i]
path.append(candidates[i])
self.backtracking(candidates, target, total, i, path, result) # 不用i+1了,表示可以重复读取当前的数
total -= candidates[i]
path.pop()
def combinationSum(self, candidates, target):
result = []
self.backtracking(candidates, target, 0, 0, [], result)
return result
40.组合总和 II
本题开始涉及到一个问题了:去重。注意题目中给我们 集合是有重复元素的,那么求出来的 组合有可能重复,但题目要求不能有重复组合。
题目链接/文章讲解:代码随想录
视频讲解:回溯算法中的去重,树层去重树枝去重,你弄清楚了没?| LeetCode:40.组合总和II_哔哩哔哩_bilibili
思路
每一个元素用过就不能再用了,而且每一层里面不能取重复的数。在39题的基础上稍微修改一下就可以了。
代码
class Solution:
def backtracking(self, candidates, target, total, startIndex, path, result):
if total == target:
result.append(path[:])
return
for i in range(startIndex, len(candidates)):
if i > startIndex and candidates[i] == candidates[i - 1]:
continue
if total + candidates[i] > target:
break
total += candidates[i]
path.append(candidates[i])
self.backtracking(candidates, target, total, i + 1, path, result)
total -= candidates[i]
path.pop()
def combinationSum2(self, candidates, target):
result = []
candidates.sort()
self.backtracking(candidates, target, 0, 0, [], result)
return result
131.分割回文串
本题较难,大家先看视频来理解 分割问题,明天还会有一道分割问题,先打打基础。
思路
拿着笔画一画其实可以知道大概,看图大概就可以看懂了,横向使用for循环,判断每一层切割位置,纵向是递归在当前这种切割的情况下后面的字符串的分割。
代码
class Solution:
def partition(self, s: str) -> List[List[str]]:
result = []
isPalindrome = [[False] * len(s) for _ in range(len(s))] # 初始化isPalindrome矩阵
self.computePalindrome(s, isPalindrome)
self.backtracking(s, 0, [], result, isPalindrome)
return result
def backtracking(self, s, startIndex, path, result, isPalindrome):
if startIndex >= len(s):
result.append(path[:])
return
for i in range(startIndex, len(s)):
if isPalindrome[startIndex][i]: # 是回文子串
substring = s[startIndex:i + 1]
path.append(substring)
self.backtracking(s, i + 1, path, result, isPalindrome) # 寻找i+1为起始位置的子串
path.pop() # 回溯过程,弹出本次已经添加的子串
def computePalindrome(self, s, isPalindrome):
for i in range(len(s) - 1, -1, -1): # 需要倒序计算,保证在i行时,i+1行已经计算好了
for j in range(i, len(s)):
if j == i:
isPalindrome[i][j] = True
elif j - i == 1:
isPalindrome[i][j] = (s[i] == s[j])
else:
isPalindrome[i][j] = (s[i] == s[j] and isPalindrome[i+1][j-1])
你知道这个任务是几号应该完成的吗,15号,你要不要看看这篇文章是什么时候发出来的。。。 事情真是太多了,不扯了。每日崩溃(1/1)