Python3网络爬虫开发实战(16)分布式爬虫(第一版)

我们了解了 Scrapy 爬虫框架的用法。这些框架都是在同一台主机上运行的,爬取效率比较有限。如果多台主机协同爬取,那么爬取效率必然会成倍增长,这就是分布式爬虫的优势。

本章我们就来了解一下分布式爬虫的基本原理,以及 Scrapy 实现分布式爬虫的流程。

一、分布式爬虫原理

我们在前面已经实现了 Scrapy 微博爬虫,虽然爬虫是异步加多线程的,但是我们只能在一台主机上运行,所以爬取效率还是有限的,分布式爬虫则是将多台主机组合起来,共同完成一个爬取任务,这将大大提高爬取的效率。

1.1 分布式爬虫架构

Scrapy 单机爬虫中有一个本地爬取队列 Queue,这个队列是利用 deque 模块实现的。如果新的 Request 生成就会放到队列里面,随后 Request 被 Scheduler 调度。之后,Request 交给 Downloader 执行爬取,简单的调度架构如图所示。

如果两个 Scheduler 同时从队列里面取 Request,每个 Scheduler 都有其对应的 Downloader,那么在带宽足够、正常爬取且不考虑队列存取压力的情况下,爬取效率会有什么变化?没错,爬取效率会翻倍。

这样,Scheduler 可以扩展多个,Downloader 也可以扩展多个。而爬取队列 Queue 必须始终为一个,也就是所谓的共享爬取队列。这样才能保证 Scheduer 从队列里调度某个 Request 之后,其他 Scheduler 不会重复调度此 Request,就可以做到多个 Schduler 同步爬取。这就是分布式爬虫的基本雏形,简单调度架构如图所示。

我们需要做的就是在多台主机上同时运行爬虫任务协同爬取,而协同爬取的前提就是共享爬取队列。这样各台主机就不需要各自维护爬取队列,而是从共享爬取队列存取 Request。但是各台主机还是有各自的 Scheduler 和 Downloader,所以调度和下载功能分别完成。如果不考虑队列存取性能消耗,爬取效率还是会成倍提高。

1.2 维护爬取队列

那么这个队列用什么维护来好呢?我们首先需要考虑的就是性能问题,什么数据库存取效率高?我们自然想到基于内存存储的 Redis,而且 Redis 还支持多种数据结构,例如列表 List、集合 Set、有序集合 Sorted Set 等等,存取的操作也非常简单,所以在这里我们采用 Redis 来维护爬取队列。

这几种数据结构存储实际各有千秋,分析如下:

  • 列表数据结构有 lpush()、lpop()、rpush()、rpop() 方法,所以我们可以用它来实现一个先进先出式爬取队列,也可以实现一个先进后出栈式爬取队列。
  • 集合的元素是无序的且不重复的,这样我们可以非常方便地实现一个随机排序的不重复的爬取队列。
  • 有序集合带有分数表示,而 Scrapy 的 Request 也有优先级的控制,所以用有集合我们可以实现一个带优先级调度的队列。

这些不同的队列我们需要根据具体爬虫的需求灵活选择。

1.3 怎样来去重

Scrapy 有自动去重,它的去重使用了 Python 中的集合。这个集合记录了 Scrapy 中每个 Request 的指纹,这个指纹实际上就是 Request 的散列值。我们可以看看 Scrapy 的源代码,如下所示:

import hashlib
def request_fingerprint(request, include_headers=None):
    if include_headers:
        include_headers = tuple(to_bytes(h.lower())
                                 for h in sorted(include_headers))
    cache = _fingerprint_cache.setdefault(request, {
   })
    if include_headers not in cache:
        fp = hashlib.sha1()
        fp.update(to_bytes(request.method))
        fp.update(to_bytes(canonicalize_url(request.url)))
        fp.update(request.body or b'')
        if include_headers:
            for hdr in include_headers:
                if hdr in request.headers:
                    fp.update(hdr)
                    for v in request.headers.getlist(hdr):
                        fp.update(v)
        cache[include_headers] = fp.hexdigest()
    return cache[include_headers]

request_fingerprint() 就是计算 Request 指纹的方法,其方法内部使用的是 hashlib 的 sha1() 方法。计算的字段包括 Request 的 Method、URL、Body、Headers 这几部分内容,这里只要有一点不同,那么计算的结果就不同。计算得到的结果是加密后的字符串,也就是指纹。每个 Request 都有独有的指纹,指纹就是一个字符串,判定字符串是否重复比判定 Request 对象是否重复容易得多,所以指纹可以作为判定 Request 是否重复的依据。

那么我们如何判定重复呢?Scrapy 是这样实现的,如下所示:

def __init__(self):
    self.fingerprints = set()

def request_seen(self, request):
    fp = self.request_fingerprint(request)
    if fp in self.fingerprints:
        return True
    self.fingerprints.add(fp)

在去重的类 RFPDupeFilter 中,有一个 request_seen() 方法,这个方法有一个参数 request,它的作用就是检测该 Request 对象是否重复。这个方法调用 request_fingerprint() 获取该 Request 的指纹,检测这个指纹是否存在于 fingerprints 变量中,而 fingerprints 是一个集合,集合的元素都是不重复的。如果指纹存在,那么就返回 True,说明该 Request 是重复的,否则这个指纹加入到集合中。如果下次还有相同的 Request 传递过来,指纹也是相同的,那么这时指纹就已经存在于集合中,Request 对象就会直接判定为重复。这样去重的目的就实现了。

Scrapy 的去重过程就是,利用集合元素的不重复特性来实现 Request 的去重。

对于分布式爬虫来说,我们肯定不能再用每个爬虫各自的集合来去重了。因为这样还是每个主机单独维护自己的集合,不能做到共享。多台主机如果生成了相同的 Request,只能各自去重,各个主机之间就无法做到去重了。

那么要实现去重,这个指纹集合也需要是共享的,Redis 正好有集合的存储数据结构,我们可以利用 Redis 的集合作为指纹集合,那么这样去重集合也是利用 Redis 共享的。每台主机新生成 Request 之后,把该 Request 的指纹与集合比对,如果指纹已经存在,说明该 Request 是重复的,否则将 Request 的指纹加入到这个集合中即可。利用同样的原理不同的存储结构我们也实现了分布式 Reqeust 的去重。

1.4 防止中断

在 Scrapy 中,爬虫运行时的 Request 队列放在内存中。爬虫运行中断后,这个队列的空间就被释放,此队列就被销毁了。所以一旦爬虫运行中断,爬虫再次运行就相当于全新的爬取过程。

要做到中断后继续爬取,我们可以将队列中的 Request 保存起来,下次爬取直接读取保存数据即可获取上次爬取的队列。我们在 Scrapy 中指定一个爬取队列的存储路径即可,这个路径使用 JOB_DIR 变量来标识,我们可以用如下命令来实现:

scrapy crawl spider -s JOBDIR=crawls/spider

更加详细的使用方法可以参见官方文档,链接为:https://doc.scrapy.org/en/latest/topics/jobs.html。

在 Scrapy 中,我们实际是把爬取队列保存到本地,第二次爬取直接读取并恢复队列即可。那么在分布式架构中我们还用担心这个问题吗?不需要。因为爬取队列本身就是用数据库保存的,如果爬虫中断了,数据库中的 Request 依然是存在的,下次启动就会接着上次中断的地方继续爬取。

所以,当 Redis 的队列为空时,爬虫会重新爬取;当 Redis 的队列不为空时,爬虫便会接着上次中断之处继续爬取。

1.5 架构实现

我们接下来就需要在程序中实现这个架构了。首先实现一个共享的爬取队列,还要实现去重的功能。另外,重写一个 Scheduer 的实现,使之可以从共享的爬取队列存取 Request。

幸运的是,已经有人实现了这些逻辑和架构,并发布成叫 Scrapy-Redis 的 Python 包。接下来,我们看看 Scrapy-Redis 的源码实现,以及它的详细工作原理。

二、Scrapy-Redis 源码解析

Scrapy-Redis 库已经为我们提供了 Scrapy 分布式的队列、调度器、去重等功能,其 GitHub 地址为:https://github.com/rmax/scrapy-redis。

本节我们深入了解一下,利用 Redis 如何实现 Scrapy 分布式。

2.1 获取源码

可以把源码克隆下来,执行如下命令:

git clone https://github.com/rmax/scrapy-redis.git

核心源码在 scrapy-redis/src/scrapy_redis 目录下。

2.2 爬取队列

从爬取队列入手,看看它的具体实现。源码文件为 queue.py,它有三个队列的实现,首先它实现了一个父类 Base,提供一些基本方法和属性,如下所示:

class Base(object):
    """Per-spider base queue class"""
    def __init__(self, server, spider, key, serializer=None):
        if serializer is None:
            serializer = picklecompat
        if not hasattr(serializer, 'loads'):
            raise TypeError("serializer does not implement 'loads' function: % r"
                            % serializer)
        if not hasattr(serializer, 'dumps'):
            raise TypeError("serializer '% s' does not implement 'dumps' function: % r"
                            % serializer)
        self.server = server
        self.spider = spider
        self.key = key % {
   'spider': spider.name}
        self.serializer = serializer

    def _encode_request(self, request):
        obj = request_to_dict(request, self.spider)
        return self.serializer.dumps(obj)

    def _decode_request(self, encoded_request):
        obj = self.serializer.loads(encoded_request)
        return request_from_dict(obj, self.spider)

    def __len__(self):
        """Return the length of the queue"""
        raise NotImplementedError

    def push(self, request):
        """Push a request"""
        raise NotImplementedError

    def pop(self, timeout=0):
        """Pop a request"""
        raise NotImplementedError

    def clear(self):
        """Clear queue/stack"""
        self.server.delete(self.key)

首先看一下 _encode_request() 和 _decode_request() 方法,因为我们需要把一 个 Request 对象存储到数据库中,但数据库无法直接存储对象,所以需要将 Request 序列化转成字符串再存储,而这两个方法就分别是序列化和反序列化的操作,利用 pickle 库来实现,一般在调用 push() 将 Request 存入数据库时会调用 _encode_request() 方法进行序列化,在调用 pop() 取出 Request 的时候会调用 _decode_request() 进行反序列化。

在父类中 __len__()、push() 和 pop() 方法都是未实现的,会直接抛出 NotImplementedError,因此这个类是不能直接被使用的,所以必须要实现一个子类来重写这三个方法,而不同的子类就会有不同的实现,也就有着不同的功能。

那么接下来就需要定义一些子类来继承 Base 类,并重写这几个方法,那在源码中就有三个子类的实现,它们分别是 FifoQueue、PriorityQueue、LifoQueue,我们分别来看下它们的实现原理。

首先是 FifoQueue:

class FifoQueue(Base):
    """Per-spider FIFO queue"""

    def __len__(self):
        """Return the length of the queue"""
        return self.server.llen(self.key)

    def push(self, request)
### 书籍概述 《Python3网络爬虫开发实战(第二版)》是一本深受读者好评的学习资料,豆瓣评分为9.0分[^3]。此书不仅适合初学者作为入门教材,也适用于有一定编程经验的技术人员深入理解网络爬虫技术。 ### 购买渠道 对于想要获取该书的读者来说,可以通过多种途径购买实体或电子版本: - **京东** 和 **当当网** 提供纸质图书销售服务; - **淘宝/天猫** 上也有众多书店售卖正版书籍; - 如果偏好阅读电子书,则可以在 **Kindle商店**, **多看阅读** 或者其他在线平台上查找并下载官方授权的PDF文件[^1]。 ### 主要内容介绍 书中涵盖了从基础概念到高级应用各个层面的知识点,具体章节安排如下: #### 数据抓取工具篇 介绍了常用的HTTP请求库如`requests`, `urllib`等;解析HTML文档结构的方法论以及对应的第三方模块比如BeautifulSoup, lxml等。 ```python import requests from bs4 import BeautifulSoup url = 'https://example.com' response = requests.get(url) soup = BeautifulSoup(response.text,'html.parser') print(soup.prettify()) ``` #### 反爬机制应对策略篇 探讨了网站常见的防爬措施及其破解思路,例如通过设置User-Agent模拟浏览器访问行为、利用代理IP池规避频率限制等问题。 #### 大规模数据采集框架设计篇 分享了Scrapy框架的工作原理与实践技巧,帮助构建高效稳定的分布式爬虫系统。 ### 推荐理由 多位读者反馈指出,《Python3网络爬虫开发实战(第二版)》相比市场上同类产品具有明显优势——紧跟行业发展潮流更新知识点,配套资源丰富实用,能够有效提高学习效率[^2]。此外,作者还特别搭建了一个专门用于展示实际项目案例和技术交流讨论的平台,进一步增强了理论联系实际的效果[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值