二叉树的层序遍历
思路:分层—从上到下、从左到右,用队列。每一层放入一个list,所有的list放入结果集,所以要有两个循环。
外层循环:队列不为空
内层循环:循环该层的节点个数,直接用size获取
(注意:如果任何操作有关分层次,都需要两个循环)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
Queue<TreeNode> que = new LinkedList<>();
if(root == null){
return res; // 不要忘记
}
que.offer(root);
while(!que.isEmpty()){
int size = que.size();
List<Integer> sub = new ArrayList<>();
for(int i = 0; i < size; i++){
root = que.poll();
sub.add(root.val);
if(root.left != null){
que.offer(root.left);
}
if(root.right != null){
que.offer(root.right);
}
}
res.add(sub);
}
return res;
}
}
二叉树的层序遍历II(Java)
倒着遍历,提供一下思路:
- 每次在结果集中添加时,都添加到首位。如:res.add(0, sub); //在索引0出加入sub–往前加
- 交换算法(注意设置List使用set,get)
int left = 0;
int right = res.size() - 1;
while(left < right){
List<Integer> temp = res.get(right);
res.set(right, res.get(left));
res.set(left, temp);
left++;
right--;
}
- 库函数:Collections.reverse(res);
- 新建一个res,指针倒序排
题目代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
List<List<Integer>> res= new ArrayList<>();
if(root == null){
return res;
}
Queue<TreeNode> que = new LinkedList<>();
que.add(root);
while(!que.isEmpty()){
List<Integer> sub = new ArrayList<>();
int size = que.size();
for(int i = 0; i < size; i++){
root = que.poll();
sub.add(root.val);
if(root.left != null) que.offer(root.left);
if(root.right != null) que.offer(root.right);
}
res.add(0, sub); //在索引0出加入sub--往前加
}
return res;
}
}
二叉树的右视图(Java)
思路:当循环到每一层的最后位置才会记录到结果集(广度搜索)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
Queue<TreeNode> que = new LinkedList<>();
que.offer(root);
while(!que.isEmpty()){
int size = que.size();
for(int i = 0; i < size; i++){ //每一层输出也是循环
root = que.poll();
if(root.left != null) que.offer(root.left);
if(root.right != null) que.offer(root.right);
if(i == size - 1) res.add(root.val);
}
}
return res;
}
}
填充每个节点的下一个右侧节点指针(Java)
方法1:层次迭代
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public Node connect(Node root) {
if(root == null){
return root;
}
Queue<Node> que = new LinkedList<>();
que.offer(root);
while(!que.isEmpty()){
int size = que.size();
for(int i = 0; i < size; i++){
Node root1 = que.poll();
if(root1.left != null) que.offer(root1.left);
if(root1.right != null) que.offer(root1.right);
if(i == size - 1){
root1.next = null;
}
else{
root1.next = que.peek();
}
}
}
return root;
}
}
方法2:完美二叉树独有做法-减少复杂度
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public Node connect(Node root) {
if(root == null){
return root;
}
Node temp = root;
while(temp.left != null){
Node cur = temp;
while(cur != null){
cur.left.next = cur.right; //共同的父节点对的下边相连
if(cur.next != null){
cur.right.next = cur.next.left; //不同的父节点对的下边相连
}
cur = cur.next;
}
temp = temp.left;
}
return root;
}
}
填充每个节点的下一个右侧节点指针II(Java)
思路:使用虚拟头结点(原因是并不是都有left)
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public Node connect(Node root) {
if(root == null){
return root;
}
Node temp = root;
while(temp != null){
Node dummyhead = new Node(); //下一层的虚拟头结点
Node dummy = dummyhead;
for(Node cur = temp; cur != null; cur = cur.next){
//循环条件跟dummy无关
if(cur.left != null){
dummy.next = cur.left;
dummy = dummy.next;
}
if(cur.right != null){
dummy.next = cur.right;
dummy = dummy.next;
}
}
temp = dummyhead.next; // 移动到下一层的实际头节点处(妙啊!!)
}
return root;
}
}
写博客的目的是每日督促并记录刷题,也欢迎大家批评指正~(day16)