前序遍历
1. 递归遍历
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>(); //不需要写入递归里,只需要一个结果集即可
preorder(root,res);
return res;
}
public void preorder(TreeNode toot, List<Integer> res){
if(toot == null){
return; //千万不要忘记终止条件
}
res.add(toot.val);
preorder(toot.left, res);
preorder(toot.right, res);
}
}
2. 迭代遍历
主要思想:利用栈,先放中间节点,取出并记录结果集。接着放右节点和左节点,并不断将栈口元素作为新的root
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
Stack<TreeNode> sk = new Stack<>();
sk.push(root);
while(!sk.empty()){
root = sk.pop(); // 挺妙的
res.add(root.val);
if(root.right != null){
sk.push(root.right);
}
if(root.left != null){
sk.push(root.left);
}
}
return res;
}
}
中序遍历
1. 递归遍历
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
inorder(root, res);
return res;
}
public void inorder(TreeNode root, List<Integer> res){
if(root == null){
return;
}
inorder(root.left, res);
res.add(root.val);
inorder(root.right, res);
}
}
2. 迭代遍历
主要思路:先看左侧(一直看到null),再看右侧
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
Stack<TreeNode> sk = new Stack<>();
while(!sk.empty() || root != null){
if(root != null){ //判断的是root而不是root.left
sk.push(root); //栈中不断记录左侧和中间值
root = root.left; //如果不为空先看左侧
}
else{
root = sk.pop();
res.add(root.val); //把最后一个有值的加入结果集
root = root.right; //看右侧有没有值
}
}
return res;
}
}
后序遍历
1. 递归遍历
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
postorder(root, res);
return res;
}
public void postorder(TreeNode root,List<Integer> res){
if(root == null){
return; //退出方法
}
postorder(root.left, res); //只是起到了搜索的作用
postorder(root.right, res);
res.add(root.val);
}
}
2. 迭代遍历
后序遍历参考前序遍历
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
/**
先按照前序来,再翻转
*/
List<Integer> res = new ArrayList<>();
if(root == null){
return res;
}
Stack<TreeNode> sk = new Stack<>();
sk.push(root.val);
while(!sk.empty()){
root = sk.pop();
res.add(root.val);
if(root.left != null){
sk.push(root.left);
}
if(root.right != null ){
sk.push(root.right);
}
}
Collections.reverse(res); //不要忘记翻转
return res;
}
}