矩形数量
给出平面上一些点(少于50个),坐标都是整数(|xi|,|yi| <= 109),有可能重复。问存在多少个以这些点为顶点的平行于坐标轴的不同矩形。(两个矩形如果四个顶点坐标都相同,就算相同的矩形)
输入
第一行一个整数T(T <= 100)表示测试数据的组数 对于每组数据 第一行一个整数n,表示点的数量 下面n行每行两个整数xi,yi表示点的坐标
输出
T行,每行一个整数表示以这些点为顶点的平行于坐标轴的矩形个数
样例输入
1
7
0 0
0 1
0 2
1 0
1 1
1 2
0 0
样例输出
3
代码:
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N=100;
PII arr[N];
int main(){
int n,sum=0,t;
cin>>t;
while(t--){
cin>>n;
for(int i=0;i<n;i++)
cin>>arr[i].first>>arr[i].second;
sort(arr,arr+n);
n=unique(arr,arr+n)-arr;// 必须要先排序,再去重,然后才二分查找
for(int i=0;i<n;i++){
int x=arr[i].first+1,y=arr[i].second+1;
int j=lower_bound(arr,arr+n,make_pair(x,y))-arr;// lower_bound是库函数二查找,找到比当前arr[i]的坐标大1的数在什么位置
sum+=n-j;
}
cout<<sum;
}
system("color 6");
return 0;
}