自主 AI Agent 的构建|Function Calling 技术实例探索

 函数调用并非一个新鲜概念。早在 2023 年 7 月,  OpenAI 就为其 GPT 模型引入了这一功能,现在这一功能也被其他竞争对手采用。比如,谷歌的 Gemini API 最近也开始支持函数调用, Anthropic 也在将其整合到 Claude 中。函数调用(译者注:Function Calling,允许模型通过调用特定的函数来执行某些复杂任务。)已经成为大语言模型(LLMs)的关键功能之一,能够显著增强大模型应用能力。因此,学习这项技术是极其有意义的。

基于此,我打算撰写一篇详细的教程,内容重点为基础介绍(因为这类教程已经很多了)之外的内容。本教程将专注于实际应用上,展示如何构建一个 fully autonomous AI agent(译者注:能够独立运行和做出决策的、不需要人为干预的 AI agent 。),并将其与 Streamlit 集成来实现类似 ChatGPT 的 Web 交互界面。虽然本教程使用 OpenAI 进行演示,但本文内容同样适用于其他支持函数调用的大语言模型,例如 Gemini。

01 函数调用(Function Calling)的用途有哪些?
Function Calling 这一技术让开发者能够定义函数(也被称为工具(tools),可以将其视为模型要执行的操作,如进行数学运算或下订单),并让模型智能地选择并输出一个包含调用这些函数所需参数的 JSON 对象。简单来说,这一技术具备以下功能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值