mybaits的二级缓存是mapper范围级别,除了在SqlMapConfig.xml设置二级缓存的总开关,还要在具体的mapper.xml中开启二级缓存
开启mybatis的二级缓存
<!--设置mybaits对缓存的支持-->
<property name="configurationProperties">
<props>
<!-- 全局映射器启用缓存 *主要将此属性设置完成即可-->
<prop key="cacheEnabled">true</prop>
<!-- 查询时,关闭关联对象即时加载以提高性能 -->
<prop key="lazyLoadingEnabled">false</prop>
<!-- 设置关联对象加载的形态,此处为按需加载字段(加载字段由SQL指 定),不会加载关联表的所有字段,以提高性能 -->
<prop key="aggressiveLazyLoading">true</prop>
</props>
</property>
测试,产生了两条sql语句,说明缓存没有生效
因为我们还需要在BookMapper.xml中添加二级缓存核心类
再次测试,只产生一条sql语句,说明使用了缓存
当查询两次,如果控制台产生两条查询语句,说明mybatis不能同时缓存多条数据。
如果只产生一条查询语句,说明mybatis默认缓存多条数据
测试
(框架的缓存策略)
说明mybatis二级缓存开启,默认既可以缓存单条,也可以缓存多条数据
也可以通过mapper.xml中的userCache属性控制是否使用缓存
测试
此时表示多条数据的缓存已经关闭
小结
对于访问多的查询请求且用户对查询结果实时性要求不高,此时可采用mybatis二级缓存技术降低数据库访问量,提高访问速度
实现方法如下:通过设置刷新间隔时间,由mybatis每隔一段时间自动清空缓存,根据数据变化频率设置缓存刷新间隔flushInterval,比如设置为30分钟、60分钟、24小时等,根据需求而定
mybatis整合redis
稍微大型项目都会使用redis缓存
步骤与ehcache缓存几乎一致
1.配置pom依赖
<redis.version>2.9.0</redis.version>
<redis.spring.version>1.7.1.RELEASE</redis.spring.version>
redis.clients
jedis
${redis.version}
org.springframework.data
spring-data-redis
${redis.spring.version}
redis存储数据需要借助序列化器,序列化器的数据存储又要依赖于json的依赖jar包,因此还要导入json的相关依赖
<!-- jackson -->
<jackson.version>2.9.3</jackson.version>
<!-- jackson -->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>${jackson.version}</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>${jackson.version}</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>${jackson.version}</version>
</dependency>
2.建立redis.properties
redis.hostName=192.168.95.110虚拟机ip
redis.port=6379
redis.password=root123密码
redis.timeout=10000
redis.maxIdle=300
redis.maxTotal=1000
redis.maxWaitMillis=1000
redis.minEvictableIdleTimeMillis=300000
redis.numTestsPerEvictionRun=1024
redis.timeBetweenEvictionRunsMillis=30000
redis.testOnBorrow=true
redis.testWhileIdle=true
3.建立applicationContext-redis.xml文件放
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns=“http://www.springframework.org/schema/beans”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xmlns:context=“http://www.springframework.org/schema/context”
xsi:schemaLocation=“http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd”>
<bean id=“connectionFactory” class=“org.springframework.data.redis.connection.jedis.JedisConnectionFactory”
destroy-method=“destroy”>
4.建立类RedisCache实现Cache 接口
package com.javaxl.ssm.util;
import org.apache.ibatis.cache.Cache;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class RedisCache implements Cache //实现类
{
private static final Logger logger = LoggerFactory.getLogger(RedisCache.class);
private static RedisTemplate<String,Object> redisTemplate;
private final String id;
/**
* The {@code ReadWriteLock}.
*/
private final ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
@Override
public ReadWriteLock getReadWriteLock()
{
return this.readWriteLock;
}
public static void setRedisTemplate(RedisTemplate redisTemplate) {
RedisCache.redisTemplate = redisTemplate;
}
public RedisCache(final String id) {
if (id == null) {
throw new IllegalArgumentException(“Cache instances require an ID”);
}
logger.debug(“MybatisRedisCache:id=” + id);
this.id = id;
}
@Override
public String getId() {
return this.id;
}
@Override
public void putObject(Object key, Object value) {
try{
logger.info(“>>>>>>>>>>>>>>>>>>>>>>>>putObject: key=”+key+“,value=”+value);
if(null!=value)
redisTemplate.opsForValue().set(key.toString(),value,60, TimeUnit.SECONDS);
}catch (Exception e){
e.printStackTrace();
logger.error(“redis保存数据异常!”);
}
}
@Override
public Object getObject(Object key) {
try{
logger.info(“>>>>>>>>>>>>>>>>>>>>>>>>getObject: key=”+key);
if(null!=key)
return redisTemplate.opsForValue().get(key.toString());
}catch (Exception e){
e.printStackTrace();
logger.error(“redis获取数据异常!”);
}
return null;
}
@Override
public Object removeObject(Object key) {
try{
if(null!=key)
return redisTemplate.expire(key.toString(),1,TimeUnit.DAYS);
}catch (Exception e){
e.printStackTrace();
logger.error(“redis获取数据异常!”);
}
return null;
}
@Override
public void clear() {
Long size=redisTemplate.execute(new RedisCallback() {
@Override
public Long doInRedis(RedisConnection redisConnection) throws DataAccessException {
Long size = redisConnection.dbSize();
//连接清除数据
redisConnection.flushDb();
redisConnection.flushAll();
return size;
}
});
logger.info(“>>>>>>>>>>>>>>>>>>>>>>>>clear: 清除了” + size + “个对象”);
}
@Override