代码随想录训练营Day34 | 134. 加油站 | 135. 分发糖果 | 860.柠檬水找零 | 406.根据身高重建队列

学习文档:代码随想录 (programmercarl.com)

学习视频:代码随想录算法公开课 | 最强算法公开课 | 代码随想录 (programmercarl.com)

Leetcode 134. 加油站

题目描述

在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

给定两个整数数组 gas 和 cost ,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1 。如果存在解,则 保证 它是 唯一 的。

示例 1:

输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。

示例 2:

输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。

解题思路

1.暴力解法

暴力的方法很明显就是O(n^2)的,遍历每一个加油站为起点的情况,模拟一圈。如果跑了一圈,中途没有断油,而且最后油量大于等于0,说明这个起点是ok的。

2.贪心算法

首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。每个加油站的剩余量rest[i]为gas[i] - cost[i]。i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。

完整代码

1.

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        for (int i = 0; i < cost.size(); i++) {
            int rest = gas[i] - cost[i]; // 记录剩余油量
            int index = (i + 1) % cost.size();
            while (rest > 0 && index != i) { // 模拟以i为起点行驶一圈(如果有rest==0,那么答案就不唯一了)
                rest += gas[index] - cost[index];
                index = (index + 1) % cost.size();
            }
            // 如果以i为起点跑一圈,剩余油量>=0,返回该起始位置
            if (rest >= 0 && index == i) return i;
        }
        return -1;
    }
};

2.

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int curSum = 0;
        int totalSum = 0;
        int start = 0;
        for (int i = 0; i < gas.size(); i++) {
            curSum += gas[i] - cost[i];
            totalSum += gas[i] - cost[i];
            if (curSum < 0) {   // 当前累加rest[i]和 curSum一旦小于0
                start = i + 1;  // 起始位置更新为i+1
                curSum = 0;     // curSum从0开始
            }
        }
        if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
        return start;
    }
};

Leetcode 135. 分发糖果

题目描述

n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。

你需要按照以下要求,给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。
  • 相邻两个孩子评分更高的孩子会获得更多的糖果。

请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。

示例 1:

输入:ratings = [1,0,2]
输出:5
解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。

示例 2:

输入:ratings = [1,2,2]
输出:4
解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。
     第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。

解题思路

先确定右边评分大于左边的情况(也就是从前向后遍历)

此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果

局部最优可以推出全局最优。

如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1

再确定左孩子大于右孩子的情况(从后向前遍历)

因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。如果还是使用从前往后遍历,无法得出结果,可以自己动手推算一下。

完整代码

class Solution {
public:
    int candy(vector<int>& ratings) {
        vector<int> candyVec(ratings.size(), 1);
        // 从前向后
        for (int i = 1; i < ratings.size(); i++) {
            if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
        }
        // 从后向前
        for (int i = ratings.size() - 2; i >= 0; i--) {
            if (ratings[i] > ratings[i + 1] ) {
                // 最后选取两次遍历中最大的数 使得比右边和左边都大
                candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
            }
        }
        // 统计结果
        int result = 0;
        for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
        return result;
    }
};

Leetcode 860. 柠檬水找零

题目描述

在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。

每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。

注意,一开始你手头没有任何零钱。

给你一个整数数组 bills ,其中 bills[i] 是第 i 位顾客付的账。如果你能给每位顾客正确找零,返回 true ,否则返回 false 。

示例 1:

输入:bills = [5,5,5,10,20]
输出:true
解释:
前 3 位顾客那里,我们按顺序收取 3 张 5 美元的钞票。
第 4 位顾客那里,我们收取一张 10 美元的钞票,并返还 5 美元。
第 5 位顾客那里,我们找还一张 10 美元的钞票和一张 5 美元的钞票。
由于所有客户都得到了正确的找零,所以我们输出 true。

示例 2:

输入:bills = [5,5,10,10,20]
输出:false
解释:
前 2 位顾客那里,我们按顺序收取 2 张 5 美元的钞票。
对于接下来的 2 位顾客,我们收取一张 10 美元的钞票,然后返还 5 美元。
对于最后一位顾客,我们无法退回 15 美元,因为我们现在只有两张 10 美元的钞票。
由于不是每位顾客都得到了正确的找零,所以答案是 false。

 解题思路

只需要维护三种金额的数量,5,10和20。

有如下三种情况:

  • 情况一:账单是5,直接收下。
  • 情况二:账单是10,消耗一个5,增加一个10
  • 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5

完整代码

class Solution {
public:
    bool lemonadeChange(vector<int>& bills) {
        int five = 0, ten = 0, twenty = 0;
        for (int bill : bills) {
            // 情况一
            if (bill == 5) five++;
            // 情况二
            if (bill == 10) {
                if (five <= 0) return false;
                ten++;
                five--;
            }
            // 情况三
            if (bill == 20) {
                // 优先消耗10美元,因为5美元的找零用处更大,能多留着就多留着
                if (five > 0 && ten > 0) {
                    five--;
                    ten--;
                    twenty++; // 其实这行代码可以删了,因为记录20已经没有意义了,不会用20来找零
                } else if (five >= 3) {
                    five -= 3;
                    twenty++; // 同理,这行代码也可以删了
                } else return false;
            }
        }
        return true;
    }
};

Leetcode 406. 根据身高重建队列

题目描述

假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。

请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。

示例 1:

输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
解释:
编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。

示例 2:

输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]

提示:

  • 1 <= people.length <= 2000
  • 0 <= hi <= 106
  • 0 <= ki < people.length
  • 题目数据确保队列可以被重建

解题思路

本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。

135. 分发糖果 (opens new window)我就强调过一次,遇到两个维度权衡的时候,一定要先确定一个维度,再确定另一个维度

如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。

那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。使用按照身高来排序

按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。

所以在按照身高从大到小排序后:

局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性

全局最优:最后都做完插入操作,整个队列满足题目队列属性

整个插入过程如下:

排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2], [4,4]]

插入的过程:

  • 插入[7,0]:[[7,0]]
  • 插入[7,1]:[[7,0],[7,1]]
  • 插入[6,1]:[[7,0],[6,1],[7,1]]
  • 插入[5,0]:[[5,0],[7,0],[6,1],[7,1]]
  • 插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]]
  • 插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]

完整代码

class Solution {
public:
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        if (a[0] == b[0]) return a[1] < b[1];
        return a[0] > b[0];
    }
    vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
        sort (people.begin(), people.end(), cmp);
        vector<vector<int>> que;
        for (int i = 0; i < people.size(); i++) {
            int position = people[i][1];
            que.insert(que.begin() + position, people[i]);
        }
        return que;
    }
};

但使用vector是非常费时的,C++中vector(可以理解是一个动态数组,底层是普通数组实现的)如果插入元素大于预先普通数组大小,vector底部会有一个扩容的操作,即申请两倍于原先普通数组的大小,然后把数据拷贝到另一个更大的数组上。

所以使用vector(动态数组)来insert,是费时的,插入再拷贝的话,单纯一个插入的操作就是O(n^2)了,甚至可能拷贝好几次,就不止O(n^2)了。

改成链表之后,C++代码如下:

// 版本二
class Solution {
public:
    // 身高从大到小排(身高相同k小的站前面)
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        if (a[0] == b[0]) return a[1] < b[1];
        return a[0] > b[0];
    }
    vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
        sort (people.begin(), people.end(), cmp);
        list<vector<int>> que; // list底层是链表实现,插入效率比vector高的多
        for (int i = 0; i < people.size(); i++) {
            int position = people[i][1]; // 插入到下标为position的位置
            std::list<vector<int>>::iterator it = que.begin();
            while (position--) { // 寻找在插入位置
                it++;
            }
            que.insert(it, people[i]);
        }
        return vector<vector<int>>(que.begin(), que.end());
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值