有关File类对象的创建 和 删除 以及目录的遍历(文件---文件夹)

File类的创建:

在获得File对象之后,可以通过CreateNewFile ()方法在本地创建一个文件,而如果要创建一个文件夹,我们使用mkdir ()方法,如果要创建多级文件夹,则可以使用mkdirs ()方法。

 创建对象的方法

    1、直接创建

    2、通过父路径创建

    3、通过父路径的实例化对象实现

eg:

package io;
 
import java.io.File;
 
public class Learn {
	public static void main(String[] args) {
		File file =new File("D:\\aa\\bb");
		File file2=new File("D:\\aa","bb");
		File file3=new File(new File("D:\\aa"),"bb");
		if(file.exists()) {
			System.out.println("确实存在");
		}
		System.out.println(file2.getPath());
		System.out.println(file3.getPath());
	}
}

 getPath() 返回File的路径;  exist() 判断file 路径是否存在:返回true false

File类的删除:

文件的删除则更简单,只要定义对应File对象,调用其delete ()方法即可。

案例:

package com.文件类;

import java.io.File;
import java.io.IOException;

public class FileTest02 {
    public static void main(String[] args) throws IOException {
        //File类对象的创建  文件---文件夹
        //创建文件
        File f1= new File("d:/aa/bb/b.txt");
        //1.如果文件的前置目录不存在,则异常2.文件前置的目录存在,文件不存在则创建一个文件,文件存在则不做任何操作
        f1.createNewFile();
        //创建文件夹
        File f2 = new File("D:/xx/yy/zz");
        //2.该方法要求所有前置目录已存在,才会创建对应的文件夹  zz
        // f2.mkdir();
        //3.该方法可以自动补全所有文件目录,并创建文件夹
        f2.mkdirs();

        //File类对象的删除
        File f3= new File("D:/xx/yy/zz");
        File f4 = new File("D:/xx/yy");
        //删除时文件夹必须为空
        f3.delete();//删除的zz
        //
        f4.delete();

    }


}

 File目录的遍历

list() : 输出String数组 ,其中对应目录下的文件名 

 listFiles() :返回 File[] 其中对应目录下成文件打包成File对象

package com.文件类;

import java.io.File;
import java.util.Arrays;

public class FileTest03 {
    public static void main(String[] args) {
        File f1 = new File("D:/aa");
       String[] list= f1.list();//获取文件夹中所有的子目录或文件的名字
        System.out.println(Arrays.toString(list));

       File []files= f1.listFiles();//获取文件夹中所有的 子目录 或  文件的file对象数组
        System.out.println(Arrays.toString(files));
        //目录的遍历  知道层级用for循环 有几个层级 就用几个for循环
        for (int i=0;i<files.length;i++){
            File temp = files[i];
            if (temp.isDirectory()){//判断是否是文件夹
                File [] files1 = temp.listFiles();
                System.out.println(Arrays.toString(files1));
            }

        }

    }
}

 递归遍历:

案例:

package com.文件类;

import static com.lib.test01.Student.fun;

public class DiGuiTest {
    private  static  int count=1;

    public static void main(String[] args) {

        //递归--复杂算法
        System.out.println("----1---");
        System.out.println("----2---");
        fun();
        System.out.println("----3---");
        System.out.println("----4---");

    }
    //方法中调用自己的方法 叫递归 递(有条件的递) 归(某个时刻不在调用自己,进行方法返回)
    public static  void fun(){
        System.out.println("----fun1---");
        System.out.println("----fun2---");
        count++;
        if (count<4){
            fun();
        }
        System.out.println("----fun3---");
        System.out.println("----fun4---");


    }
}

 eg:

package com.文件类;

public class DiGguiTest01 {
    public static void main(String[] args) {
//        for (int i=1;i<=10;i++){
//            System.out.println(i);
//        }
       // print(10);
        int he = sum (2);
        System.out.println(he);

    }

    /*
     *递归实现打印输出1-n
     *
     */
    public static void print(int n) {
        System.out.println(n);//倒叙  10-1

        if (n > 0) {
            print(n-1);//1--(n-1)
        }
//            n--;
//            if (n>0){
//       print(n);//1--(n-1)
//        }
//            System.out.println(n);//0-9 正序
      }

      /*
      *完成1-n的累加求和
       */
      public  static  int sum(int n){

          int sum=0;
          sum= sum+n;//累加n
          if (n>0){
              sum= sum+sum(n-1);//累加1--(n-1)
          }
          return  sum;
      }

}

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值