一、题目信息
题目:Physics-informed neural networks for solving flow problems modeled by the 2D Shallow Water Equations without labeled data
二、摘要
This paper investigates the application of physics-informed neural networks (PINNs) to solve free-surface flow problems governed by the 2D shallow water equations (SWEs). Two types of PINNs are developed and analyzed: a physics-informed fully connected neural network (PIFCN) and a physics-informed convolutional neural network (PICN). The PINNs eliminate the need for labeled data for training by employing the SWEs, initial and boundary conditions as components of the loss function to be minimized. Results from a set of idealized and real-world tests showed that the prediction accuracy and computation time (i.e., training time) of both PINNs may be less affected by the resolution of the domain discretization when compared against solutions by a Finite Volume (FV) model. Overall, the PICN shows a better trade-off between computational speed and accuracy than the PIFCN. Also, our results for the idealized problems indicated that PINNs can provide more than 5 times higher prediction accuracy than the FV model, while the FV simulation with coarse resolution (e.g., 10 m) can provide sub-centimeter accurate (RMSE) solutions at least one order of magnitude faster than the PINNs. Results from a river flood simulation showed that PINNs delivered better speed-accuracy trade-off than the FV model in terms of predicting the water depth, while FV models outperformed the PINNs for predictions of total flow discharge.
本文研究了物理信息神经网络(PINNs)在求解二维浅水方程(SWES)自由表面流问题中的应用。开发和分析了两种类型的PINN:物理信息全连接神经网络(PIFCN)和物理信息卷积神经网络(PICN)。PINN通过采用SWE、初始和边界条件作为要最小化的损失函数的分量,消除了对用于训练的标记数据的需要。来自一组理想化和真实世界测试的结果表明,预测精度和计算时间(即,当与通过有限体积(FV)模型的解决方案相比时,两个PINN的分辨率(例如,训练时间)可以较少地受到域离散化的分辨率的影响。总的来说,PICN比PIFCN在计算速度和精度之间表现出更好的权衡。 此外对理想化问题的结果表明,PINN可以提供比FV模型高5倍以上的预测精度,而具有粗分辨率的FV模拟(例如,10 m)可以提供比PINN快至少一个数量级的亚厘米精度(RMSE)解决方案。从河流洪水模拟结果表明,PINN提供更好的速度-精度权衡比FV模型在预测水深,而FV模型优于PINN的预测总流量。
三、创新点
1、物理信息神经网络被开发用于求解浅水方程。
2、建议的网络可以在没有任何标记数据的情况下进行训练。
3、卷积神经网络优于全连接神经网络。
四、网络架构
五、实验
一、真实世界模拟
文章中的真实世界实验模拟了2005年11月27日至12月1日期间发生在意大利台伯河(Tiber River)的洪水事件。选择这一事件是为了测试物理信息神经网络(PINNs)在处理复杂的真实场景中的表现,这比文章之前描述的简化理想模型更加具有现实意义。
通过PICN、PIFCN和FV获得的水面高程 η 示例,与横截面S1处FV(5)生成的相应基准(黑线)进行对比。
台伯河主河道横截面S1(a)和S2(B)处的预测水深误差
总体来看,PICN模型在水深预测上具有明显优势,而PIFCN模型则在速度和精度之间的平衡性上较为逊色。尽管FV模型在流量预测上表现出更高的精度,但其计算成本明显高于PICN。这意味着在实际洪水情境中,如果重点是水深的预测而非流量,PINN模型(尤其是PICN)在计算效率和精度上提供了一个合理的替代方案。
六、结论
本文提出了两种物理信息神经网络(PINNs),分别是基于全连接神经网络(PIFCN)和卷积神经网络(PICN)的模型,用于预测通常由浅水方程(SWEs)模拟的自由表面流动。PINN通过结合浅水方程、边界条件和初始条件来消除对标记数据的依赖,作为求解SWEs的替代方法。通过三个测试用例,包括两个理想化流动问题和一个真实的洪水模拟,评估了模型的准确性和计算性能。结果表明,PICN在速度和精度的权衡上通常优于PIFCN,尤其是在空间分辨率较低的情况下,PICN表现出对网格分辨率变化的鲁棒性。此外,虽然传统的有限体积(FV)模型在流量预测方面表现较好,但在流深预测中,PICN模型能够在较低计算成本下实现类似的准确性。在某些粗略分辨率的应用场景中,PINN模型展示了更高的预测精度和计算效率。尽管PINN技术尚未完全取代传统数值方法,但它作为一种新兴技术展现了显著的潜力,特别是在解决某些现实世界复杂问题时值得进一步研究和开发。