本项目是实现基于Yolov3目标检测算对来自kaggle的 Global Wheat Detection 数据集的训练和预测。yolov3本融合多种先进方法,尤其在小目标检测上效果有一定的提升,是一个速度和精度均衡的目标检测网络。
香软好吃的面包、美味小笼包、可口的饺子、以及各种特色诱人面食,你常常都会品尝到小麦加工的产品,这些作为备受欢迎的食物使小麦被广泛研究。植物科学家使用“麦穗”(含有谷物的植物顶部的尖刺)的图像检测方法,图像是全球麦田的大量准确数据,估计不同品种小麦头的密度和大小。农民在管理小麦决策时,可以使用这些数据来评估健康状况和成熟度。
然而,在室外田间图像中准确检测小麦头在视觉上可能具有挑战性。茂密的小麦植物经常重叠,风会模糊照片。两者都使得很难识别单个头部。此外,外观因成熟度、颜色、基因型和头部方向而异。最后,由于小麦在世界范围内种植,因此必须考虑不同的品种、种植密度、模式和田间条件。为小麦表型开发的模型需要在不同的生长环境之间进行泛化。目前的检测方法涉及单级和两级检测器(Yolo-V3和Faster-RCNN),但即使使用大型数据集进行训练,仍然存在对训练区域的偏差