数据分析和数据挖掘的工作内容

基本的数据分析工作通常包含以下几个方面的内容:

  1. 确定目标(输入):理解业务,确定指标口径。
  2. 获取数据:数据仓库(SQL提数)、电子表格、三方接口、网络爬虫、开放数据集等。
  3. 清洗数据:包括对缺失值、重复值、异常值的处理以及相关的预处理(格式化、离散化、二值化等)。
  4. 数据透视:排序、统计、分组聚合、交叉表、透视表等 。
  5. 数据呈现(输出):数据可视化,发布工作成果(数据分析报告)。
  6. 分析洞察(后续):解释数据的变化,提出对应的方案。

深入的数据挖掘工作通常包含以下几个方面的内容:

  1. 确定目标(输入):理解业务,明确挖掘目标。
  2. 数据准备:数据采集、数据描述、数据探索、质量判定等。
  3. 数据加工:提取数据、清洗数据、数据变换、特殊编码、降维、特征选择等。
  4. 数据建模:模型比较、模型选择、算法应用。
  5. 模型评估:交叉检验、参数调优、结果评价。
  6. 模型部署(输出):模型落地、业务改进、运营监控、报告撰写。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值