【CS231n】Python Tutorial

【CS231n】Python Tutorial

【1】Python3的使用

基本数据类型

整型,浮点型(支持算数运算)

布尔型(支持逻辑运算:与and、或or、非not、异或!=)

字符型

print(type(t))
# 可查t变量的类型

容器(containers)

列表list

案例:animals = [‘cat’, ‘dog’, ‘monkey’]

slicing【切片】:可以切出列表中的某个范围

nums = list(range(5))     # range is a built-in function that creates a list of integers
print(nums)               # Prints "[0, 1, 2, 3, 4]"
print(nums[2:4])          # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print(nums[2:])           # Get a slice from index 2 to the end; prints "[2, 3, 4]"
print(nums[:2])           # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
print(nums[:])            # Get a slice of the whole list; prints "[0, 1, 2, 3, 4]"
print(nums[:-1])          # Slice indices can be negative; prints "[0, 1, 2, 3]"
nums[2:4] = [8, 9]        # Assign a new sublist to a slice
print(nums)               # Prints "[0, 1, 8, 9, 4]"

list comprehension【列表推导式】

nums = [0, 1, 2, 3, 4]
even_squares = [x ** 2 for x in nums if x % 2 == 0]
print(even_squares)  # Prints "[0, 4, 16]"
字典dictionary

案例:d = {‘cat’: ‘cute’, ‘dog’: ‘furry’}

dictionary comprehension【字典推导式】

nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square)  # Prints "{0: 0, 2: 4, 4: 16}"
集合set

案例:animals = {‘cat’, ‘dog’}

set comprehension【集合推导式】

from math import sqrt
nums = {int(sqrt(x)) for x in range(30)}
print(nums)  # Prints "{0, 1, 2, 3, 4, 5}"
元组tuple

案例:t = (5, 6)

tuples can be used as keys in dictionaries and as elements of sets, while lists cannot.(元组可作为字典的关键词、集合的元素,而列表不能)

函数(functions)

使用【def】关键词开头

类(classes)

类中包含constructor(构造函数)和instance method(实例方法)

案例:

class Greeter(object):

    # Constructor
    def __init__(self, name):
        self.name = name  # Create an instance variable

    # Instance method
    def greet(self, loud=False):
        if loud:
            print('HELLO, %s!' % self.name.upper())
        else:
            print('Hello, %s' % self.name)

【2】Numpy库的使用

在使用前加上

import numpy as np

数组(arrays)

初始化

以list初始化numpy数组

import numpy as np

a = np.array([1, 2, 3])   # Create a rank 1 array
# a.shape: (3, )

b = np.array([[1,2,3],[4,5,6]])    # Create a rank 2 array
# b.shape: (2, 3)

以内设函数初始化numpy数组

import numpy as np

# define m * n
m = 2
n = 3
constant = 7

a = np.zeros((m, n))   # all zeros

b = np.ones((m, n)	# all ones

c = np.full((m,n),constant) # all constant

d = np.eye(m) # identity matrix,对角线全1
            """
            1 0
            0 1
            """
            
e = np.random.random((m,n)) # random matrix

常用函数:

np.zeros

np.ones

np.full

np.eye

np.random.random

生成一个和x类似的array,可用:

np.empty_like(x)

切片

numpy数组的切片

a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
b = a[:2, 1:3]

"""
b取了a的前2行,第1列和第2列(列标和行标从0开始)

a矩阵是
1 2 3 4
5 6 7 8
9 10 11 12

b矩阵是
2 3
6 7
"""

row_r1 = a[1, :]    # Rank 1 view of the second row of a
# int和slice同时使用,阶级变低1阶(比如这里是2-1=1阶)
row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
# 只使用slice,阶级和原来的numpy数组对其(比如这里是2阶)
print(row_r1, row_r1.shape)  # Prints "[5 6 7 8] (4,)"
print(row_r2, row_r2.shape)  # Prints "[[5 6 7 8]] (1, 4)"
整型下标构造新array

整数下标integer array index,可以从一个array中取出元素,构造出另外一个array

案例:

import numpy as np

# Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])

print(a)  # prints "array([[ 1,  2,  3],
          #                [ 4,  5,  6],
          #                [ 7,  8,  9],
          #                [10, 11, 12]])"

# Create an array of indices
b = np.array([0, 2, 0, 1])

# Select one element from each row of a using the indices in b
print(a[np.arange(4), b])  # Prints "[ 1  6  7 11]"
"""
这里以b为每一行的列标,从a中取出了元素,构造了新的array
例如,1来自a中第0行的第0个元素,6来自a中第1行的第2个元素
"""

# Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10

print(a)  # prints "array([[11,  2,  3],
          #                [ 4,  5, 16],
          #                [17,  8,  9],
          #                [10, 21, 12]])
布尔型下标构造新array

布尔型下标:

1:通过条件,给出array中每个元素的布尔值;

2:通过条件,筛选元素,组成新的array

案例:

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2)   # Find the elements of a that are bigger than 2;
                     # this returns a numpy array of Booleans of the same
                     # shape as a, where each slot of bool_idx tells
                     # whether that element of a is > 2.

print(bool_idx)      # Prints "[[False False]
                     #          [ True  True]
                     #          [ True  True]]"

# We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx])  # Prints "[3 4 5 6]"

# We can do all of the above in a single concise statement:
print(a[a > 2])     # Prints "[3 4 5 6]"

数据类型方面,numpy array的元素是相同类型的。

array数学计算

np.add(x, y)

np.subtract(x, y)

np.multiply(x, y)

np.divide(x, y)

np.sqrt(x)

以上都是elementwise(对应行标列表下的一个元素)操作

np.dot(x, y) 点乘

案例:

import numpy as np

x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])

v = np.array([9,10])
w = np.array([11, 12])

# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))

# Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))

# Matrix / matrix product; both produce the rank 2 array
# [[19 22]
#  [43 50]]
print(x.dot(y))
print(np.dot(x, y))

np.sum()

案例:

import numpy as np

x = np.array([[1,2],[3,4]])

print(np.sum(x))  # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0))  # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1))  # Compute sum of each row; prints "[3 7]"

np.sum对所有元素求和

axis=0,约束为每列求和

axis=1,约束为每行求和

矩阵转置transpose

x = np.array()

new_x = x.T

广播机制broadcasting

通过广播,对齐2个array

案例:

import numpy as np

# Compute outer product of vectors
v = np.array([1,2,3])  # v has shape (3,)
w = np.array([4,5])    # w has shape (2,)
"""
To compute an outer product, we first reshape v to be a column vector of shape (3, 1); we can then broadcast it against w to yield an output of shape (3, 2), which is the outer product of v and w:
# [[ 4  5]
#  [ 8 10]
#  [12 15]]

reshape_v:
[[1,2,3]]

w:
[4,5]
"""
print(np.reshape(v, (3, 1)) * w)




# Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:
# [[2 4 6]
#  [5 7 9]]
print(x + v)




"""
x.T:
1 4
2 5
3 6

w:
4 5

x.T+W:
5 9
6 10
7 11

final result:
5 6 7
9 10 11
"""
print((x.T + w).T)

"""
reshape_w:
[[4,5]]

x:
[[1,2,3], 
 [4,5,6]]

x+reshape_w:
x的第一行都加4,第二行都加5
"""
print(x + np.reshape(w, (2, 1)))




# Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
# [[ 2  4  6]
#  [ 8 10 12]]
print(x * 2)

【3】SciPy库的使用

图像处理

from scipy.misc import imread, imsave, imresize

# 读取图像
img = imread('assets/cat.jpg')
print(img.dtype, img.shape)  # Prints "uint8 (400, 248, 3)"

# 改变颜色通道值
img_tinted = img * [1, 0.95, 0.9]

# 改变图像尺寸
img_tinted = imresize(img_tinted, (300, 300))

# 保存图像
imsave('assets/cat_tinted.jpg', img_tinted)

两点间的距离

import numpy as np
from scipy.spatial.distance import pdist, squareform

# 3个点的坐标:
# [[0 1]
#  [1 0]
#  [2 0]]
x = np.array([[0, 1], [1, 0], [2, 0]])
print(x)

# 计算邻接矩阵
# [[ 0.          1.41421356  2.23606798]
#  [ 1.41421356  0.          1.        ]
#  [ 2.23606798  1.          0.        ]]
d = squareform(pdist(x, 'euclidean'))
print(d)

【4】Matplotlib库的使用

画图

import numpy as np
import matplotlib.pyplot as plt

# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine', 'Cosine'])
plt.show()

plt.plot(array, array_name):画出array中的点

plt.xlabel(‘x axis label’):添加x坐标轴的变量名称

plt.title(‘TITLE’):添加标题

plt.legend([‘x’,‘y’]):添加图例

plt.show():显示图像

画子图

调用plt.subplot(height, width, number)

import numpy as np
import matplotlib.pyplot as plt

# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1)

# Make the first plot
plt.plot(x, y_sin)
plt.title('Sine')

# Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')

# Show the figure.
plt.show()

显示图像

调用plt.imshow(image)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MorleyOlsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值