Java集合总结三[Map篇]

HashMap

特征

线程不安全的, 多线程环境下可以采用concurrent并发包下的concurrentHashMap

数据结构

哈希表

用于存储Node<K-V>键值对

是一个Node数组

Node是数组+链表的复合结构

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable
    transient Node<K,V>[] table;  //哈希表

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash; //hash值
        final K key; //key值
        V value; //value值
        Node<K,V> next;  //node指针
    }

当哈希表的size到达一定值时, 会转换为红黑树

    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;  //左子树
        TreeNode<K,V> right;  //右子树
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
    }

构造方法

    //无参构造
    //默认负载因子 DEFAULT_LOAD_FACTOR= 0.75F
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
    //有参构造(初始化容量) 
    //使用默认负载因子 DEFAULT_LOAD_FACTOR
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    //有参构造(初始化容量, 负载因子)
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException;

        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException;

        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

loadFactor \ capacity \ threshold 配和使用

添加操作

    //put(key, value)方法
    public V put(K key, V value) {
        //hash(key)是计算key的hash值并以此为参传输数据
        return putVal(hash(key), key, value, false, true);
    }

    //putVal方法
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //如果table为null 或者 table的长度为0.  进行扩容操作resize()方法
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //table为hash的索引是否有元素, 如果无元素, 将K-V放入该空间
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        //如果有元素进行如下操作
        else {
            Node<K,V> e; K k;
            //如果 添加key和旧key相同 , 替换value的值
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //如果不相同,  p为TreeNode时,  添加到Tree上面
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //不相同, 并且p不为TreeNode, 即为链表Node, 添加到Node上面
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            //插入后, Node的长度 >8时, 转换成树
                            treeifyBin(tab, hash);
                        break;
                    }
                    //插入链表时, 依次比较key, 相同的话就替换原value
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //当key已经存在时,  替换value
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //如果添加成功后, table存的Node数量 > 临界值, 将扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

threshold = capacity * loadFactor

capacity即为map的容量, threshold为临界长度, loadFactor负载因子(默认0.75)

扩容源码

    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        //oldTable的容量大于0
        if (oldCap > 0) {
            //table容量的最大值限制
            if (oldCap >= MAXIMUM_CAPACITY) {
                //容量大于最大容量1<<30, 设置临界值MAX_VALUE
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //如果: 默认的容量16 <= 容量*2 < 最大容量
            //设置 new容量 = 2 * old容量
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        //如果threshold > 0(即使用初始容量的有参构造器时)
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        //默认构造器, 默认容量DEFAULT_INITIAL_CAPACITY(16), 临界值为(12)
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //对临界值做判断,确保其不为0,因为在上面第二种情况(oldThr > 0),并没有计算newThr
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        // 构造新表,初始化表中数据
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            //遍历将原来table中的数据放到扩容后的新表中来
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //没有链表Node节点,直接放到新的table中下标为hah中
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    //如果是treeNode节点,则树上的节点放到newTab中
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //如果e后面还有链表节点,则遍历e所在的链表,
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        //链表中的节点, 再次hash后, 位置是否改变
                        do {
                            next = e.next;
                            //没改变的在原来的位置
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            //改变的需要移动到相应位置
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        //下标不变,将原表某个下标的元素放到扩容表同样位置
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        //下标改变, [下标+增加的扩容量]的位置上
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

Java8.HashMap源码-resize()流程图-站长资讯中心

删除操作

    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    //removeDo()
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

查找操作

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    //getDo()
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

HashMap

基于红黑树实现

    static final class Entry<K,V> implements Map.Entry<K,V> {
        K key;
        V value;
        Entry<K,V> left;
        Entry<K,V> right;
        Entry<K,V> parent;
        boolean color = BLACK;
    }
    

    private transient Entry<K,V> root;

可以指定排序的比较器

树的数据结构不再详细介绍

参考

https://www.cnblogs.com/LiaHon/p/11149644.html

Java8.HashMap源码-resize()流程图-站长资讯中心

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值