Python数据分析-常用的15个Matplotlib可视化图表,推荐~

15个Matplotlib图的汇编,在数据分析和可视化中最有用。此列表允许您使用Python的Matplotlib和Seaborn库选择要显示的可视化对象。

常用matplotlib绘图设置:



# !pip install brewer2mpl  
import numpy as np  
import pandas as pd  
import matplotlib as mpl  
import matplotlib.pyplot as plt  
import seaborn as sns  
import warnings; warnings.filterwarnings(action='once')  
  
large = 22; med = 16; small = 12  
params = {'axes.titlesize': large,  
          'legend.fontsize': med,  
          'figure.figsize': (16, 10),  
          'axes.labelsize': med,  
          'axes.titlesize': med,  
          'xtick.labelsize': med,  
          'ytick.labelsize': med,  
          'figure.titlesize': large}  
plt.rcParams.update(params)  
plt.style.use('seaborn-whitegrid')  
sns.set\_style("white")  
%matplotlib inline  
  
# Version  
print(mpl.\_\_version\_\_)  #> 3.0.0  
print(sns.\_\_version\_\_)  #> 0.9.0


1. 散点图

Scatteplot是用于研究两个变量之间关系的经典和基本图。如果数据中有多个组,则可能需要以不同颜色可视化每个组。在Matplotlib,你可以方便地使用。



# Import dataset   
midwest = pd.read\_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest\_filter.csv")  
  
# Prepare Data   
# Create as many colors as there are unique midwest\['category'\]  
categories = np.unique(midwest\['category'\])  
colors = \[plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))\]  
  
# Draw Plot for Each Category  
plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')  
  
for i, category in enumerate(categories):  
    plt.scatter('area', 'poptotal',   
                data=midwest.loc\[midwest.category==category, :\],   
                s=20, c=colors\[i\], label=str(category))  
  
# Decorations  
plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),  
              xlabel='Area', ylabel='Population')  
  
plt.xticks(fontsize=12); plt.yticks(fontsize=12)  
plt.title("Scatterplot of Midwest Area vs Population", fontsize=22)  
plt.legend(fontsize=12)      
plt.show()    


在这里插入图片描述

2. 带边界的气泡图

有时,您希望在边界内显示一组点以强调其重要性。在此示例中,您将从应该被环绕的数据帧中获取记录,并将其传递给下面的代码中描述的记录。encircle()



from matplotlib import patches  
from scipy.spatial import ConvexHull  
import warnings; warnings.simplefilter('ignore')  
sns.set\_style("white")  
  
# Step 1: Prepare Data  
midwest = pd.read\_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest\_filter.csv")  
  
# As many colors as there are unique midwest\['category'\]  
categories = np.unique(midwest\['category'\])  
colors = \[plt.cm.tab10(i/float(len(categories)\-1)) for i in range(len(categories))\]  
  
# Step 2: Draw Scatterplot with unique color for each category  
fig = plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')      
  
for i, category in enumerate(categories):  
    plt.scatter('area', 'poptotal', data=midwest.loc\[midwest.category==category, :\], s='dot\_size', c=colors\[i\], label=str(category), edgecolors='black', linewidths=.5)  
  
# Step 3: Encircling  
# https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot  
def encircle(x,y, ax=None, \*\*kw):  
    if not ax: ax=plt.gca()  
    p = np.c\_\[x,y\]  
    hull = ConvexHull(p)  
    poly = plt.Polygon(p\[hull.vertices,:\], \*\*kw)  
    ax.add\_patch(poly)  
  
# Select data to be encircled  
midwest\_encircle\_data = midwest.loc\[midwest.state=='IN', :\]                           
  
# Draw polygon surrounding vertices      
encircle(midwest\_encircle\_data.area, midwest\_encircle\_data.poptotal, ec="k", fc="gold", alpha=0.1)  
encircle(midwest\_encircle\_data.area, midwest\_encircle\_data.poptotal, ec="firebrick", fc="none", linewidth=1.5)  
  
# Step 4: Decorations  
plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),  
              xlabel='Area', ylabel='Population')  
  
plt.xticks(fontsize=12); plt.yticks(fontsize=12)  
plt.title("Bubble Plot with Encircling", fontsize=22)  
plt.legend(fontsize=12)      
plt.show()      



  

在这里插入图片描述

3. 带线性回归最佳拟合线的散点图

如果你想了解两个变量如何相互改变,那么最合适的线就是要走的路。下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从下面的调用中删除该参数。



# Import Data  
df = pd.read\_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg\_ggplot2.csv")  
df\_select = df.loc\[df.cyl.isin(\[4,8\]), :\]  
  
# Plot  
sns.set\_style("white")  
gridobj = sns.lmplot(x="displ", y="hwy", hue="cyl", data=df\_select,   
                     height=7, aspect=1.6, robust=True, palette='tab10',   
                     scatter\_kws=dict(s=60, linewidths=.7, edgecolors='black'))  
  
# Decorations  
gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))  
plt.title("Scatterplot with line of best fit grouped by number of cylinders", fontsize=20)


在这里插入图片描述

每个回归线都在自己的列中

或者,您可以在其自己的列中显示每个组的最佳拟合线。你可以通过在里面设置参数来实现这一点。



# Import Data  
df = pd.read\_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg\_ggplot2.csv")  
df\_select = df.loc\[df.cyl.isin(\[4,8\]), :\]  
  
# Each line in its own column  
sns.set\_style("white")  
gridobj = sns.lmplot(x="displ", y="hwy",   
                     data=df\_select,   
                     height=7,   
                     robust=True,   
                     palette='Set1',   
                     col="cyl",  
                     scatter\_kws=dict(s=60, linewidths=.7, edgecolors='black'))  
  
# Decorations  
gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))  
plt.show()


在这里插入图片描述

4. 抖动图

通常,多个数据点具有完全相同的X和Y值。结果,多个点相互绘制并隐藏。为避免这种情况,请稍微抖动点,以便您可以直观地看到它们。这很方便使用



# Import Data  
df = pd.read\_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg\_ggplot2.csv")  
  
# Draw Stripplot  
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)      
sns.stripplot(df.cty, df.hwy, jitter=0.25, size=8, ax=ax, linewidth=.5)  
  
# Decorations  
plt.title('Use jittered plots to avoid overlapping of points', fontsize=22)  
plt.show()


在这里插入图片描述

5. 计数图

避免点重叠问题的另一个选择是增加点的大小,这取决于该点中有多少点。因此,点的大小越大,周围的点的集中度就越大。



# Import Data  
df = pd.read\_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg\_ggplot2.csv")  
df\_counts = df.groupby(\['hwy', 'cty'\]).size().reset\_index(name='counts')  
  
# Draw Stripplot  
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)      
sns.stripplot(df\_counts.cty, df\_counts.hwy, size=df\_counts.counts\*2, ax=ax)  
  
# Decorations  
plt.title('Counts Plot - Size of circle is bigger as more points overlap', fontsize=22)  
plt.show()


在这里插入图片描述

6. 边缘直方图

边缘直方图具有沿X和Y轴变量的直方图。这用于可视化X和Y之间的关系以及单独的X和Y的单变量分布。该图如果经常用于探索性数据分析(EDA)。



# Import Data  
df = pd.read\_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg\_ggplot2.csv")  
  
# Create Fig and gridspec  
fig = plt.figure(figsize=(16, 10), dpi= 80)  
grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)  
  
# Define the axes  
ax\_main = fig.add\_subplot(grid\[:-1, :-1\])  
ax\_right = fig.add\_subplot(grid\[:-1, -1\], xticklabels=\[\], yticklabels=\[\])  
ax\_bottom = fig.add\_subplot(grid\[-1, 0:-1\], xticklabels=\[\], yticklabels=\[\])  
  
# Scatterplot on main ax  
ax\_main.scatter('displ', 'hwy', s=df.cty\*4, c=df.manufacturer.astype('category').cat.codes, alpha=.9, data=df, cmap="tab10", edgecolors='gray', linewidths=.5)  
  
# histogram on the right  
ax\_bottom.hist(df.displ, 40, histtype='stepfilled', orientation='vertical', color='deeppink')  
ax\_bottom.invert\_yaxis()  
  
# histogram in the bottom  
ax\_right.hist(df.hwy, 40, histtype='stepfilled', orientation='horizontal', color='deeppink')  
  
# Decorations  
ax\_main.set(title='Scatterplot with Histograms   
 displ vs hwy', xlabel='displ', ylabel='hwy')  
ax\_main.title.set\_fontsize(20)  
for item in (\[ax\_main.xaxis.label, ax\_main.yaxis.label\] + ax\_main.get\_xticklabels() + ax\_main.get\_yticklabels()):  
    item.set\_fontsize(14)  
  
xlabels = ax\_main.get\_xticks().tolist()  
ax\_main.set\_xticklabels(xlabels)  
plt.show()


在这里插入图片描述

7.边缘箱形图

边缘箱图与边缘直方图具有相似的用途。然而,箱线图有助于精确定位X和Y的中位数,第25和第75百分位数。



# Import Data  
df = pd.read\_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg\_ggplot2.csv")  
  
# Create Fig and gridspec  
fig = plt.figure(figsize=(16, 10), dpi= 80)  
grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)  
  
# Define the axes  
ax\_main = fig.add\_subplot(grid\[:-1, :-1\])  
ax\_right = fig.add\_subplot(grid\[:-1, -1\], xticklabels=\[\], yticklabels=\[\])  
ax\_bottom = fig.add\_subplot(grid\[-1, 0:-1\], xticklabels=\[\], yticklabels=\[\])  
  
# Scatterplot on main ax  
ax\_main.scatter('displ', 'hwy', s=df.cty\*5, c=df.manufacturer.astype('category').cat.codes, alpha=.9, data=df, cmap="Set1", edgecolors='black', linewidths=.5)  
  
# Add a graph in each part  
sns.boxplot(df.hwy, ax=ax\_right, orient="v")  
sns.boxplot(df.displ, ax=ax\_bottom, orient="h")  
  
# Decorations ------------------  
# Remove x axis name for the boxplot  
ax\_bottom.set(xlabel='')  
ax\_right.set(ylabel='')  
  
# Main Title, Xlabel and YLabel  
ax\_main.set(title='Scatterplot with Histograms   
 displ vs hwy', xlabel='displ', ylabel='hwy')  
  
# Set font size of different components  
ax\_main.title.set\_fontsize(20)  
for item in (\[ax\_main.xaxis.label, ax\_main.yaxis.label\] + ax\_main.get\_xticklabels() + ax\_main.get\_yticklabels()):  
    item.set\_fontsize(14)  
  
plt.show()


8. 相关图

Correlogram用于直观地查看给定数据帧(或2D数组)中所有可能的数值变量对之间的相关度量。



# Import Dataset  
df = pd.read\_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")  
  
# Plot  
plt.figure(figsize=(12,10), dpi= 80)  
sns.heatmap(df.corr(), xticklabels=df.corr().columns, yticklabels=df.corr().columns, cmap='RdYlGn', center=0, annot=True)  
  
# Decorations  
plt.title('Correlogram of mtcars', fontsize=22)  
plt.xticks(fontsize=12)  
plt.yticks(fontsize=12)  
plt.show()


在这里插入图片描述

9. 矩阵图

成对图是探索性分析中的最爱,以理解所有可能的数字变量对之间的关系。它是双变量分析的必备工具。



# Load Dataset  
df = sns.load\_dataset('iris')  
  
# Plot  
plt.figure(figsize=(10,8), dpi= 80)  
sns.pairplot(df, kind="scatter", hue="species", plot\_kws=dict(s=80, edgecolor="white", linewidth=2.5))  
plt.show()




# Load Dataset  
df = sns.load\_dataset('iris')  
  
# Plot  
plt.figure(figsize=(10,8), dpi= 80)  
sns.pairplot(df, kind="reg", hue="species")  
plt.show()


10. 发散型条形图

如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么发散条是一个很好的工具。它有助于快速区分数据中组的性能,并且非常直观,并且可以立即传达这一点。



# Prepare Data  
df = pd.read\_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")  
x = df.loc\[:, \['mpg'\]\]  
df\['mpg\_z'\] = (x - x.mean())/x.std()  
df\['colors'\] = \['red' if x < 0 else 'green' for x in df\['mpg\_z'\]\]  
df.sort\_values('mpg\_z', inplace=True)  
df.reset\_index(inplace=True)  
  
# Draw plot  
plt.figure(figsize=(14,10), dpi= 80)  
plt.hlines(y=df.index, xmin=0, xmax=df.mpg\_z, color=df.colors, alpha=0.4, linewidth=5)  
  
# Decorations  
plt.gca().set(ylabel='$Model$', xlabel='$Mileage$')  
plt.yticks(df.index, df.cars, fontsize=12)  
plt.title('Diverging Bars of Car Mileage', fontdict={'size':20})  
plt.grid(linestyle='--', alpha=0.5)  
plt.show()


11. 发散型文本

分散的文本类似于发散条,如果你想以一种漂亮和可呈现的方式显示图表中每个项目的价值,它更喜欢。



# Prepare Data  
df = pd.read\_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")  
x = df.loc\[:, \['mpg'\]\]  
df\['mpg\_z'\] = (x - x.mean())/x.std()  
df\['colors'\] = \['red' if x < 0 else 'green' for x in df\['mpg\_z'\]\]  
df.sort\_values('mpg\_z', inplace=True)  
df.reset\_index(inplace=True)  
  
# Draw plot  
plt.figure(figsize=(14,14), dpi= 80)  
plt.hlines(y=df.index, xmin=0, xmax=df.mpg\_z)  
for x, y, tex in zip(df.mpg\_z, df.index, df.mpg\_z):  
    t = plt.text(x, y, round(tex, 2), horizontalalignment='right' if x < 0 else 'left',   
                 verticalalignment='center', fontdict={'color':'red' if x < 0 else 'green', 'size':14})  
  
# Decorations      
plt.yticks(df.index, df.cars, fontsize=12)  
plt.title('Diverging Text Bars of Car Mileage', fontdict={'size':20})  
plt.grid(linestyle='--', alpha=0.5)  
plt.xlim(\-2.5, 2.5)  
plt.show()


12. 发散型包点图

发散点图也类似于发散条。然而,与发散条相比,条的不存在减少了组之间的对比度和差异。



# Prepare Data  
df = pd.read\_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")  
x = df.loc\[:, \['mpg'\]\]  
df\['mpg\_z'\] = (x - x.mean())/x.std()  
df\['colors'\] = \['red' if x < 0 else 'darkgreen' for x in df\['mpg\_z'\]\]  
df.sort\_values('mpg\_z', inplace=True)  
df.reset\_index(inplace=True)  
  
# Draw plot  
plt.figure(figsize=(14,16), dpi= 80)  
plt.scatter(df.mpg\_z, df.index, s=450, alpha=.6, color=df.colors)  
for x, y, tex in zip(df.mpg\_z, df.index, df.mpg\_z):  
    t = plt.text(x, y, round(tex, 1), horizontalalignment='center',   
                 verticalalignment='center', fontdict={'color':'white'})  
  
# Decorations  
# Lighten borders  
plt.gca().spines\["top"\].set\_alpha(.3)  
plt.gca().spines\["bottom"\].set\_alpha(.3)  
plt.gca().spines\["right"\].set\_alpha(.3)  
plt.gca().spines\["left"\].set\_alpha(.3)  
  
plt.yticks(df.index, df.cars)  
plt.title('Diverging Dotplot of Car Mileage', fontdict={'size':20})  
plt.xlabel('$Mileage$')  
plt.grid(linestyle='--', alpha=0.5)  
plt.xlim(\-2.5, 2.5)  
plt.show()


13. 带标记的发散型棒棒糖图

带标记的棒棒糖通过强调您想要引起注意的任何重要数据点并在图表中适当地给出推理,提供了一种可视化分歧的灵活方式。



# Prepare Data  
df = pd.read\_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")  
x = df.loc\[:, \['mpg'\]\]  
df\['mpg\_z'\] = (x - x.mean())/x.std()  
df\['colors'\] = 'black'  
  
# color fiat differently  
df.loc\[df.cars == 'Fiat X1-9', 'colors'\] = 'darkorange'  
df.sort\_values('mpg\_z', inplace=True)  
df.reset\_index(inplace=True)  
  
  
# Draw plot  
import matplotlib.patches as patches  
  
plt.figure(figsize=(14,16), dpi= 80)  
plt.hlines(y=df.index, xmin=0, xmax=df.mpg\_z, color=df.colors, alpha=0.4, linewidth=1)  
plt.scatter(df.mpg\_z, df.index, color=df.colors, s=\[600 if x == 'Fiat X1-9' else 300 for x in df.cars\], alpha=0.6)  
plt.yticks(df.index, df.cars)  
plt.xticks(fontsize=12)  
  
# Annotate  
plt.annotate('Mercedes Models', xy=(0.0, 11.0), xytext=(1.0, 11), xycoords='data',   
            fontsize=15, ha='center', va='center',  
            bbox=dict(boxstyle='square', fc='firebrick'),  
            arrowprops=dict(arrowstyle='-\[, widthB=2.0, lengthB=1.5', lw=2.0, color='steelblue'), color='white')  
  
# Add Patches  
p1 = patches.Rectangle((\-2.0, \-1), width=.3, height=3, alpha=.2, facecolor='red')  
p2 = patches.Rectangle((1.5, 27), width=.8, height=5, alpha=.2, facecolor='green')  
plt.gca().add\_patch(p1)  
plt.gca().add\_patch(p2)  
  
# Decorate  
plt.title('Diverging Bars of Car Mileage', fontdict={'size':20})  
plt.grid(linestyle='--', alpha=0.5)  
plt.show()  



14.面积图

通过对轴和线之间的区域进行着色,区域图不仅强调峰值和低谷,而且还强调高点和低点的持续时间。高点持续时间越长,线下面积越大。



import numpy as np  
import pandas as pd  
  
# Prepare Data  
df = pd.read\_csv("https://github.com/selva86/datasets/raw/master/economics.csv", parse\_dates=\['date'\]).head(100)  
x = np.arange(df.shape\[0\])  
y\_returns = (df.psavert.diff().fillna(0)/df.psavert.shift(1)).fillna(0) \* 100  
  
# Plot  
plt.figure(figsize=(16,10), dpi= 80)  
plt.fill\_between(x\[1:\], y\_returns\[1:\], 0, where=y\_returns\[1:\] >= 0, facecolor='green', interpolate=True, alpha=0.7)  
plt.fill\_between(x\[1:\], y\_returns\[1:\], 0, where=y\_returns\[1:\] <= 0, facecolor='red', interpolate=True, alpha=0.7)  
  
# Annotate  
plt.annotate('Peak   
1975', xy=(94.0, 21.0), xytext=(88.0, 28),  
             bbox=dict(boxstyle='square', fc='firebrick'),  
             arrowprops=dict(facecolor='steelblue', shrink=0.05), fontsize=15, color='white')  
  
  
# Decorations  
xtickvals = \[str(m)\[:3\].upper()+"-"+str(y) for y,m in zip(df.date.dt.year, df.date.dt.month\_name())\]  
plt.gca().set\_xticks(x\[::6\])  
plt.gca().set\_xticklabels(xtickvals\[::6\], rotation=90, fontdict={'horizontalalignment': 'center', 'verticalalignment': 'center\_baseline'})  
plt.ylim(\-35,35)  
plt.xlim(1,100)  
plt.title("Month Economics Return %", fontsize=22)  
plt.ylabel('Monthly returns %')  
plt.grid(alpha=0.5)  
plt.show()


15. 有序条形图

有序条形图有效地传达了项目的排名顺序。但是,在图表上方添加度量标准的值,用户可以从图表本身获取精确信息。



# Prepare Data  
df\_raw = pd.read\_csv("https://github.com/selva86/datasets/raw/master/mpg\_ggplot2.csv")  
df = df\_raw\[\['cty', 'manufacturer'\]\].groupby('manufacturer').apply(lambda x: x.mean())  
df.sort\_values('cty', inplace=True)  
df.reset\_index(inplace=True)  
  
# Draw plot  
import matplotlib.patches as patches  
  
fig, ax = plt.subplots(figsize=(16,10), facecolor='white', dpi= 80)  
ax.vlines(x=df.index, ymin=0, ymax=df.cty, color='firebrick', alpha=0.7, linewidth=20)  
  
# Annotate Text  
for i, cty in enumerate(df.cty):  
    ax.text(i, cty+0.5, round(cty, 1), horizontalalignment='center')  
  
  
# Title, Label, Ticks and Ylim  
ax.set\_title('Bar Chart for Highway Mileage', fontdict={'size':22})  
ax.set(ylabel='Miles Per Gallon', ylim=(0, 30))  
plt.xticks(df.index, df.manufacturer.str.upper(), rotation=60, horizontalalignment='right', fontsize=12)  
  
# Add patches to color the X axis labels  
p1 = patches.Rectangle((.57, \-0.005), width=.33, height=.13, alpha=.1, facecolor='green', transform=fig.transFigure)  
p2 = patches.Rectangle((.124, \-0.005), width=.446, height=.13, alpha=.1, facecolor='red', transform=fig.transFigure)  
fig.add\_artist(p1)  
fig.add\_artist(p2)  
plt.show()



作为一个IT的过来人,我自己整理了一些python学习资料,希望对你们有帮助。

编程资料、学习路线图、源代码、软件安装包等!

① Python所有方向的学习路线图,清楚各个方向要学什么东西
② 100多节Python课程视频,涵盖必备基础、爬虫和数据分析
③ 100多个Python实战案例,学习不再是只会理论
④ 华为出品独家Python漫画教程,手机也能学习
在这里插入图片描述
朋友们如果需要可以微扫描下方二维码都可以免费获取【保证100%免费】。
在这里插入图片描述

如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值